Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryuta Tanimoto is active.

Publication


Featured researches published by Ryuta Tanimoto.


Cancer Research | 2008

Down-regulation of Inhibition of Differentiation-1 via Activation of Activating Transcription Factor 3 and Smad Regulates REIC/Dickkopf-3–Induced Apoptosis

Yuji Kashiwakura; Kazuhiko Ochiai; Masami Watanabe; Fernando Abarzua; Masakiyo Sakaguchi; Munenori Takaoka; Ryuta Tanimoto; Yasutomo Nasu; Nam Ho Huh; Hiromi Kumon

REIC/Dickkopf-3 (Dkk-3), a tumor suppressor gene, has been investigated in gene therapy studies. Our previous study suggested that REIC/Dkk-3-induced apoptosis mainly resulted from phosphorylation of c-Jun-NH(2) kinase (JNK) in prostate cancer cells. However, the precise mechanisms, especially the molecular mechanisms regulating JNK phosphorylation, remain unclear. In this study, we investigated the mechanisms participating in JNK phosphorylation in the context of a refractory cancer disease, malignant mesothelioma (MM). Adenovirus-mediated overexpression of REIC/Dkk-3 induced apoptosis mainly through JNK activation in immortalized MM cells (211H cells). Interestingly, transcriptional down-regulation of inhibition of differentiation-1 (Id-1) was detected in REIC/Dkk-3-overexpressed 211H cells. Moreover, restoration of Id-1 expression antagonized REIC/Dkk-3-induced JNK phosphorylation and apoptosis. Mutagenesis experiments with the 2.1-kb human Id-1 promoter revealed that activating transcription factor 3 (ATF3) and Smad interaction, with their respective binding motifs, was essential for REIC/Dkk-3-mediated suppression of Id-1 promoter activity. ATF3 activation was probably induced by endoplasmic reticulum stress. Finally, we showed strong antitumor effects from REIC/Dkk-3 gene transfer into the pleural cavity in an orthotopic MM mouse model. Relative to control tumor tissue, REIC/Dkk-3-treated tumor tissue showed down-regulated expression of Id-1 mRNA, enhanced expression of phosphorylated JNK, and an increased number of apoptotic cells. In summary, we first showed that both ATF3 and Smad were crucially and synergistically involved in down-regulation of Id-1, which regulated JNK phosphorylation in REIC/Dkk-3-induced apoptosis. Thus, gene therapy with REIC/Dkk-3 may be a promising therapeutic tool for MM.


Journal of Biological Chemistry | 2009

Overexpression of REIC/Dkk-3 in Normal Fibroblasts Suppresses Tumor Growth via Induction of Interleukin-7

Masakiyo Sakaguchi; Ken Kataoka; Fernando Abarzua; Ryuta Tanimoto; Masami Watanabe; Hitoshi Murata; Swe Swe Than; Kaoru Kurose; Yuji Kashiwakura; Kazuhiko Ochiai; Yasutomo Nasu; Hiromi Kumon; Nam Ho Huh

We previously showed that the tumor suppressor gene REIC/Dkk-3, when overexpressed by an adenovirus (Ad-REIC), exhibited a dramatic therapeutic effect on human cancers through a mechanism triggered by endoplasmic reticulum stress. Adenovirus vectors show no target cell specificity and thus may elicit unfavorable side effects through infection of normal cells even upon intra-tumoral injection. In this study, we examined possible effects of Ad-REIC on normal cells. We found that infection of normal human fibroblasts (NHF) did not cause apoptosis but induced production of interleukin (IL)-7. The induction was triggered by endoplasmic reticulum stress and mediated through IRE1α, ASK1, p38, and IRF-1. When Ad-REIC-infected NHF were transplanted in a mixture with untreated human prostate cancer cells, the growth of the cancer cells was significantly suppressed. Injection of an IL-7 antibody partially abrogated the suppressive effect of Ad-REIC-infected NHF. These results indicate that Ad-REIC has another arm against human cancer, an indirect host-mediated effect because of overproduction of IL-7 by mis-targeted NHF, in addition to its direct effect on cancer cells.


Biochemical and Biophysical Research Communications | 2008

An N-terminal 78 amino acid truncation of REIC/Dkk-3 effectively induces apoptosis.

Fernando Abarzua; Yuji Kashiwakura; Munenori Takaoka; Masami Watanabe; Kazuhiko Ochiai; Masakiyo Sakaguchi; Takao Iwawaki; Ryuta Tanimoto; Yasutomo Nasu; Nam Ho Huh; Hiromi Kumon

Overexpression of REIC/Dkk-3 (a tumor suppressor gene) induces cancer cell apoptosis through endoplasmic reticulum (ER) stress. Therefore, the identification of the portion of REIC/Dkk-3 that causes ER stress may be essential for the development of cancer treatment based on REIC/Dkk-3. Here, we made several truncated forms of REIC/Dkk-3 and investigated their therapeutic potentials against prostate cancer. Among three truncated forms, a variant comprising the N-terminal 78 amino acid region of REIC/Dkk-3 ((1-78)REIC/Dkk-3) most strongly induced ER stress and apoptosis in human prostate cancer cells (PC3). For in vivo gene expression, we coupled a biodegradable polymer with naked DNA, which attained robust trans-gene expression in PC3-derived subcutaneous tumor. In therapeutic experiments, we demonstrated that multiple direct injections of polymer-conjugated (1-78)REIC/Dkk-3 plasmid provoke ER stress and significantly reduced the subcutaneous tumor volume compared with the control group. We suggest this non-viral strategy may be an effective alternative to viral gene therapy.


International Journal of Urology | 2004

The female partner's satisfaction with sildenafil citrate treatment of erectile dysfunction

Takaharu Ichikawa; Akira Takao; Daisuke Manabe; Michihisa Saegusa; Ryuta Tanimoto; Kenji Aramaki; Masaya Yamamoto; Toshiya Okazaki

Abstract Background: Data on female partners’ satisfaction are scarce, although there have been many articles on patient satisfaction after sildenafil citrate treatment. The aim of this study was to evaluate the satisfaction of female partners of patients receiving sildenafil citrate for their erectile dysfunction (ED) and to assess the female partners’ sexual function.


Oncology Reports | 2014

A novel gene expression system strongly enhances the anticancer effects of a REIC/Dkk-3-encoding adenoviral vector

Masami Watanabe; Masakiyo Sakaguchi; Rie Kinoshita; Haruki Kaku; Yuichi Ariyoshi; Hideo Ueki; Ryuta Tanimoto; Shin Ebara; Kazuhiko Ochiai; Junichiro Futami; Shun Ai Li; Peng Huang; Yasutomo Nasu; Nam Ho Huh; Hiromi Kumon

Gene expression systems with various promoters, including the cytomegalovirus (CMV) promoter, have been developed to increase the gene expression in a variety of normal and cancer cells. In particular, in the clinical trials of cancer gene therapy, a more efficient and robust gene expression system is required to achieve sufficient therapeutic outcomes. By inserting the triple translational enhancer sequences of human telomerase reverse transcriptase (hTERT), Simian virus 40 (SV40) and CMV downstream of the sequence of the BGH polyA, we were able to develop a novel gene expression system that significantly enhances the expression of the genes of interest. We termed this novel gene expression cassette the super gene expression (SGE) system, and herein verify the utility of the SGE cassette for a replication-deficient adenoviral vector. We newly developed an adenoviral vector expressing the tumor suppressor, reduced expression in immortalized cells (REIC)/Dickkopf-3 (Dkk-3), based on the CMV promoter-driven SGE system (Ad-SGE-REIC) and compared the therapeutic utility of Ad-SGE-REIC with that of the conventional adenoviral vectors (Ad-CMV-REIC or Ad-CAG-REIC). The results demonstrated that the CMV promoter-SGE system allows for more potent gene expression, and that the Ad-SGE-REIC is superior to conventional adenoviral systems in terms of the REIC protein expression and therapeutic effects. Since the SGE cassette can be applied for the expression of various therapeutic genes using various vector systems, we believe that this novel system will become an innovative tool in the field of gene expression and gene therapy.


International Journal of Cancer | 2009

Down-regulation of BiP/GRP78 sensitizes resistant prostate cancer cells to gene-therapeutic overexpression of REIC/Dkk-3

Ryuta Tanimoto; Masakiyo Sakaguchi; Fernando Abarzua; Ken Kataoka; Kaoru Kurose; Hitoshi Murata; Yasutomo Nasu; Hiromi Kumon; Nam Ho Huh

We have recently shown that an adenovirus carrying REIC/Dkk‐3 (Ad‐REIC) exhibits a potent tumor‐specific cell‐killing function for various human cancers. It has also become evident that some human cancers are resistant to Ad‐REIC‐induced apoptosis. The aim of the present study was to determine the molecular mechanisms of resistance to Ad‐REIC. First, we isolated resistant clones from a human prostate cancer cell line, PC3, after repeated exposure to Ad‐REIC. Infection efficiency of the adenovirus vector and expression level of REIC/Dkk‐3 in the resistant clones were similar to those in the parental PC3 cells. By screening for alteration in levels and functional status of proteins involved in Ad‐REIC‐induced apoptosis, we found that BiP/GRP78, an ER‐residing chaperone protein, was expressed at higher levels consistently among resistant cells. Expression levels of BiP and rates of apoptosis induced by Ad‐REIC were inversely correlated. Down‐regulation of BiP with siRNA sensitized the resistant cells to Ad‐REIC in vivo as well as in culture. These results indicate that BiP is a major determinant of resistance to Ad‐REIC‐induced apoptosis. Thus BiP is useful for diagnosis of inherent and acquired resistance of cancers and also as a target molecule to overcome resistance to the gene therapeutic Ad‐REIC.


Cancer Biology & Therapy | 2013

Serum caveolin-1, a biomarker of drug response and therapeutic target in prostate cancer models

Salahaldin A. Tahir; Shinji Kurosaka; Ryuta Tanimoto; Alexei Goltsov; Sanghee Park; Timothy C. Thompson

We investigated the effect of dasatinib and sunitinib on tyrosine kinase (TK) signaling, caveolin-1 (Cav-1) expression and secretion and proliferation of PC-3 and DU145 prostate cancer cells in vitro and in vivo. Treatment of both cell lines with either dasatinib or sunitinib reduced phosphorylation of PDGFR, VEGFR2, Akt, FAK, Src (dasatinib only) and Cav-1, and reduced cellular and secreted levels of Cav-1. Both agents dose-dependently inhibited proliferation of these cells. In PC-3 and DU145 subcutaneous xenografts, treatment with dasatinib, sunitinib or anti-Cav-1 antibody (Ab) alone produced significant tumor regression compared with that by vehicle or IgG alone. Combined dasatinib and anti-Cav-1 Ab treatment or sunitinib and anti-Cav-1 Ab produced greater tumor regression than either treatment alone. Serum Cav-1 levels were lower in dasatinib- and sunitinib-treated mice than they were in vehicle-treated mice, and correlated positively with tumor growth in dasatinib- and sunitinib-treated groups (r = 0.48, p = 0.031; r = 0.554, p = 0.0065, respectively), compared with vehicle controls. Cav-1 knockdown, in combination with dasatinib or sunitinib treatment in PC-3 cells, caused a greater reduction in the phosphorylation of PDGFR-β and VEGFR2, and expression and secretion of PDGF-B and VEGF-A than that in PC-3 cells treated with dasatinib or sunitinib alone in control siRNA cells, suggesting that Cav-1 is involved in an autocrine pathway that is affected by these drugs. Overall, our results suggest a role for Cav-1 as a biomarker of response to both dasatinib and sunitinib treatment and as a therapeutic target in prostate cancer.


Endocrinology | 2015

Sortilin Regulates Progranulin Action in Castration-Resistant Prostate Cancer Cells

Ryuta Tanimoto; Alaide Morcavallo; Mario Terracciano; Shi Qiong Xu; Manuela Stefanello; Simone Buraschi; Kuojung G. Lu; Demetrius H. Bagley; Leonard G. Gomella; Katia Scotlandi; Antonino Belfiore; Renato V. Iozzo; Andrea Morrione

The growth factor progranulin is as an important regulator of transformation in several cellular systems. We have previously demonstrated that progranulin acts as an autocrine growth factor and stimulates motility, proliferation, and anchorage-independent growth of castration-resistant prostate cancer cells, supporting the hypothesis that progranulin may play a critical role in prostate cancer progression. However, the mechanisms regulating progranulin action in castration-resistant prostate cancer cells have not been characterized. Sortilin, a single-pass type I transmembrane protein of the vacuolar protein sorting 10 family, binds progranulin in neurons and negatively regulates progranulin signaling by mediating progranulin targeting for lysosomal degradation. However, whether sortilin is expressed in prostate cancer cells and plays any role in regulating progranulin action has not been established. Here, we show that sortilin is expressed at very low levels in castration-resistant PC3 and DU145 cells. Significantly, enhancing sortilin expression in PC3 and DU145 cells severely diminishes progranulin levels and inhibits motility, invasion, proliferation, and anchorage-independent growth. In addition, sortilin overexpression negatively modulates Akt (protein kinase B, PKB) stability. These results are recapitulated by depleting endogenous progranulin in PC3 and DU145 cells. On the contrary, targeting sortilin by short hairpin RNA approaches enhances progranulin levels and promotes motility, invasion, and anchorage-independent growth. We dissected the mechanisms of sortilin action and demonstrated that sortilin promotes progranulin endocytosis through a clathrin-dependent pathway, sorting into early endosomes and subsequent lysosomal degradation. Collectively, these results point out a critical role for sortilin in regulating progranulin action in castration-resistant prostate cancer cells, suggesting that sortilin loss may contribute to prostate cancer progression.


Matrix Biology | 2017

The perlecan-interacting growth factor progranulin regulates ubiquitination, sorting, and lysosomal degradation of sortilin

Ryuta Tanimoto; Chiara Palladino; Shi Qiong Xu; Simone Buraschi; Thomas Neill; Leonard G. Gomella; Stephen C. Peiper; Antonino Belfiore; Renato V. Iozzo; Andrea Morrione

Despite extensive clinical and experimental studies over the past decades, the pathogenesis and progression to the castration-resistant stage of prostate cancer remains largely unknown. Progranulin, a secreted growth factor, strongly binds the heparin-sulfate proteoglycan perlecan, and counteracts its biological activity. We established that progranulin acts as an autocrine growth factor and promotes prostate cancer cell motility, invasion, and anchorage-independent growth. Progranulin was overexpressed in prostate cancer tissues vis-à-vis non-neoplastic tissues supporting the hypothesis that progranulin may play a key role in prostate cancer progression. However, progranulins mode of action is not well understood and proteins regulating progranulin signaling have not been identified. Sortilin, a single-pass type I transmembrane protein of the Vps10 family, binds progranulin in neurons and targets progranulin for lysosomal degradation. Significantly, in DU145 and PC3 cells, we detected very low levels of sortilin associated with high levels of progranulin production and enhanced motility. Restoring sortilin expression decreased progranulin levels, inhibited motility and anchorage-independent growth and destabilized Akt. These results demonstrated a critical role for sortilin in regulating progranulin and suggest that sortilin loss may contribute to prostate cancer progression. Here, we provide the novel observation that progranulin downregulated sortilin protein levels independent of transcription. Progranulin induced sortilin ubiquitination, internalization via clathrin-dependent endocytosis and sorting into early endosomes for lysosomal degradation. Collectively, these results constitute a regulatory feed-back mechanism whereby sortilin downregulation ensures sustained progranulin-mediated oncogenesis.


Oncotarget | 2016

Suppression of progranulin expression inhibits bladder cancer growth and sensitizes cancer cells to cisplatin

Simone Buraschi; Shi Qiong Xu; Manuela Stefanello; Igor Moskalev; Alaide Morcavallo; Marco Genua; Ryuta Tanimoto; Ruth Birbe; Stephen C. Peiper; Leonard G. Gomella; Antonino Belfiore; Peter C. Black; Renato V. Iozzo; Andrea Morrione

We have recently demonstrated a critical role for progranulin in bladder cancer. Progranulin contributes, as an autocrine growth factor, to the transformed phenotype by modulating Akt-and MAPK-driven motility, invasion and anchorage-independent growth. Progranulin also induces F-actin remodeling by interacting with the F-actin binding protein drebrin. In addition, progranulin is overexpressed in invasive bladder cancer compared to normal tissue controls, suggesting that progranulin might play a key role in driving the transition to the invasive phenotype of urothelial cancer. However, it is not established whether targeting progranulin could have therapeutic effects on bladder cancer. In this study, we stably depleted urothelial cancer cells of endogenous progranulin by shRNA approaches and determined that progranulin depletion severely inhibited the ability of tumorigenic urothelial cancer cells to migrate, invade and grow in anchorage-independency. We further demonstrate that progranulin expression is critical for tumor growth in vivo, in both xenograft and orthotopic tumor models. Notably, progranulin levels correlated with response to cisplatin treatment and were upregulated in bladder tumors. Our data indicate that progranulin may constitute a novel target for therapeutic intervention in bladder tumors. In addition, progranulin may serve as a novel biomarker for bladder cancer.

Collaboration


Dive into the Ryuta Tanimoto's collaboration.

Top Co-Authors

Avatar

Yasutomo Nasu

Kyoto Prefectural University of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge