Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryutaro Fukui is active.

Publication


Featured researches published by Ryutaro Fukui.


Journal of Experimental Medicine | 2009

Unc93B1 biases Toll-like receptor responses to nucleic acid in dendritic cells toward DNA- but against RNA-sensing

Ryutaro Fukui; Shin-ichiroh Saitoh; Fumi Matsumoto; Hiroko Kozuka-Hata; Masaaki Oyama; Koichi Tabeta; Bruce Beutler; Kensuke Miyake

Toll-like receptors (TLRs) 3, 7, and 9 recognize microbial nucleic acids in endolysosomes and initiate innate and adaptive immune responses. TLR7/9 in dendritic cells (DCs) also respond to self-derived RNA/DNA, respectively, and drive autoantibody production. Remarkably, TLR7 and 9 appear to have mutually opposing, pathogenic or protective, impacts on lupus nephritis in MRL/lpr mice. Little is known, however, about the contrasting relationship between TLR7 and 9. We show that TLR7 and 9 are inversely linked by Unc93B1, a multiple membrane-spanning endoplasmic reticulum (ER) protein. Complementation cloning with a TLR7-unresponsive but TLR9-responsive cell line revealed that amino acid D34 in Unc93B1 repressed TLR7-mediated responses. D34A mutation rendered Unc93B1-deficient DCs hyperresponsive to TLR7 ligand but hyporesponsive to TLR9 ligand, with TLR3 responses unaltered. Unc93B1 associates with and delivers TLR7/9 from the ER to endolysosomes for ligand recognition. The D34A mutation up-regulates Unc93B1 association with endogenous TLR7 in DCs, whereas Unc93B1 association with TLR9 was down-regulated by the D34A mutation. Consistently, the D34A mutation up-regulated ligand-induced trafficking of TLR7 but down-regulated that of TLR9. Collectively, TLR response to nucleic acids in DCs is biased toward DNA-sensing by Unc93B1.


Journal of Experimental Medicine | 2007

A protein associated with Toll-like receptor (TLR) 4 (PRAT4A) is required for TLR-dependent immune responses.

Koichiro Takahashi; Takuma Shibata; Sachiko Akashi-Takamura; Takashi Kiyokawa; Yasutaka Wakabayashi; Natsuko Tanimura; Toshihiko Kobayashi; Fumi Matsumoto; Ryutaro Fukui; Taku Kouro; Yoshinori Nagai; Kiyoshi Takatsu; Shin-ichiroh Saitoh; Kensuke Miyake

Immune cells express multiple Toll-like receptors (TLRs) that are concomitantly activated by a variety of pathogen products. Although there is presumably a need to coordinate the expression and function of TLRs in individual cells, little is known about the mechanisms governing this process. We show that a protein associated with TLR4 (PRAT4A) is required for multiple TLR responses. PRAT4A resides in the endoplasmic reticulum, and PRAT4A knockdown inhibited trafficking of TLR1 and TLR4 to the cell surface and ligand-induced trafficking of TLR9 to lysosomes. Other cell-surface molecules were expressed normally on immunocytes from PRAT4A−/− mice. There was impaired cytokine production to TLR ligands, except to the TLR3 ligand poly(I:C), and to whole bacteria. Activation of antigen-specific T helper type 1 responses were also defective. Moreover, PRAT4A−/− bone marrow chimeric mice were resistant to lipopolysaccharide-induced sepsis. These results suggest that PRAT4A regulates the subcellular distribution and response of multiple TLRs and is required for both innate and adaptive immune responses.


Nature Communications | 2013

An essential role for the N-terminal fragment of Toll-like receptor 9 in DNA sensing

Masahiro Onji; Atsuo Kanno; Shin-Ichiroh Saitoh; Ryutaro Fukui; Yuji Motoi; Takuma Shibata; Fumi Matsumoto; Shintaro Sato; Hiroshi Kiyono; Kazuhide Yamamoto; Kensuke Miyake

Toll-like receptor 9 (TLR9) is an innate immune sensor for microbial DNA that erroneously responds to self DNA in autoimmune disease. To prevent autoimmune responses, Toll-like receptor 9 is excluded from the cell surface and silenced until the N-terminal half of the ectodomain (TLR9N) is cleaved off in the endolysosome. Truncated Toll-like receptor 9 (TLR9C) senses ingested microbial DNA, although the precise role of the truncation remains controversial. Here we show that TLR9 is expressed on the surface of splenic dendritic cells. Following the cleavage of TLR9 in the endolysosome, N-terminal half of the ectodomain remains associated with truncated TLR9, forming the complex TLR9N+C. The TLR9-dependent cytokine production by Tlr9(-/-) dendritic cells is rescued by a combination of TLR9N and TLR9C, but not by TLR9C alone. These results demonstrate that the TLR9N+C complex is a bona fide DNA sensor.


Blood | 2011

Bortezomib suppresses function and survival of plasmacytoid dendritic cells by targeting intracellular trafficking of Toll-like receptors and endoplasmic reticulum homeostasis

Makiko Hirai; Norimitsu Kadowaki; Toshio Kitawaki; Haruyuki Fujita; Akifumi Takaori-Kondo; Ryutaro Fukui; Kensuke Miyake; Takahiro Maeda; Shimeru Kamihira; Yoshiki Miyachi; Takashi Uchiyama

Dendritic cells (DCs) play a pivotal role in the pathogenesis of inflammatory disorders, so suppressing the activity of DCs is instrumental in treating such diseases. In the present study, we show that a proteasome inhibitor, bortezomib, suppresses the survival and immunostimulatory function of human plasmacytoid DCs (pDCs) by targeting 2 critical points, intracellular trafficking of nucleic acid-sensingToll-like receptors (TLRs) and endoplasmic reticulum (ER) homeostasis. Among the immune cells in blood, pDCs were the most susceptible to the killing effect of bortezomib. This correlates with a decrease in the spliced form of a transcription factor XBP1, which rescues cells from apoptosis by maintaining ER homeostasis. Bortezomib suppressed the production of interferon-α and interleukin-6 by pDCs activated with a TLR9-stimulating CpG DNA and a TLR7-stimulating influenza virus, which appears to be partially independent of apoptosis. Bortezomib inhibited translocation of TLR9 from the ER to endolysosomes but not of an ER membrane protein, Unc93B1, that delivers TLR9 to endolysosomes. Thus, bortezomib suppresses the activity of pDCs by inhibiting intracellular trafficking of TLRs through disrupting the coordinated translocation of TLRs and Unc93B1 and by disturbing ER homeostasis. This study suggests that proteasome inhibitors may alleviate inflammatory disorders such as lupus and psoriasis that involve pDCs.


International Immunology | 2013

Essential role for Toll-like receptor 7 (TLR7)-unique cysteines in an intramolecular disulfide bond, proteolytic cleavage and RNA sensing

Atsuo Kanno; Chikako Yamamoto; Masahiro Onji; Ryutaro Fukui; Shin-ichiroh Saitoh; Yuji Motoi; Takuma Shibata; Fumi Matsumoto; Tatsushi Muta; Kensuke Miyake

Toll-like receptor 7 (TLR7) an innate immune sensor for microbial RNA, erroneously responds to self-derived RNA. To avoid autoimmune responses, TLR7 is suggested to be silenced until the N-terminal half of the TLR7 ectodomain (TLR7N) is cleaved off. Resultant truncated TLR7 (TLR7C) is thought to signal microbial RNA. We here show that TLR7N remains associated with TLR7C through a disulfide bond. By N-terminal amino acid sequencing, TLR7C was found to start at 461E or 462A. The newly established monoclonal anti-TLR7N showed that endogenous TLR7 in bone marrow-derived dendritic cells was almost all cleaved and cleaved TLR7N remained in endolysosomes. TLR7N in endolysosomes was linked with TLR7C by a disulfide bond. In contrast, TLR9 did not have a disulfide bond between TLR9N and TLR9C fragments. Among the cysteines unique to the ectodomain of TLR7 but not TLR9 (Cys98, Cys445, Cys475 and Cys722), Cys98 in TLR7N and Cys475 in TLR7C were required for an intramolecular disulfide bond. These cysteines were also needed for proteolytic cleavage of and RNA sensing by TLR7, but not for TLR7 trafficking from endoplasmic reticulum to endosomes. No response was seen in TLR7 mutants lacking the proteolytic cleavage site or TLR7C alone. These results demonstrate requirement for proteolytic cleavage and TLR7N in TLR7 responses and indicate RNA sensing by TLR7N + TLR7C.


Nature Communications | 2015

Targeting cell surface TLR7 for therapeutic intervention in autoimmune diseases

Atsuo Kanno; Natsuko Tanimura; Masayuki Ishizaki; Kentaro Ohko; Yuji Motoi; Masahiro Onji; Ryutaro Fukui; Takaichi Shimozato; Kazuhide Yamamoto; Takuma Shibata; Shigetoshi Sano; Akiko Sugahara-Tobinai; Toshiyuki Takai; Umeharu Ohto; Toshiyuki Shimizu; Shin-Ichiroh Saitoh; Kensuke Miyake

Toll-like receptor 7 (TLR7) senses microbial-derived RNA but can also potentially respond to self-derived RNA. To prevent autoimmune responses, TLR7 is thought to localize in endolysosomes. Contrary to this view, we show here that TLR7 is present on the cell surface of immune cells and that TLR7 responses can be inhibited by an anti-TLR7 antibody. The anti-TLR7 antibody is internalized with TLR7 and accumulates in endolysosomes as an immune complex. TLR7 responses in dendritic cells, macrophages and B cells are all inhibited by the anti-TLR7 antibody. Furthermore, the anti-TLR7 antibody inhibits in vivo cytokine production induced by a TLR7 ligand. Spontaneous TLR7 activation in Unc93b1(D34A/D34A) mice causes lethal inflammation. Progressive inflammation such as splenomegaly, thrombocytopenia and chronic active hepatitis are ameliorated by anti-TLR7 antibody treatment. These results demonstrate that cell surface TLR7 is a promising target for therapeutic intervention in autoimmune diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2014

UNC93B1 is essential for the plasma membrane localization and signaling of Toll-like receptor 5

Ji-Won Huh; Takuma Shibata; Misun Hwang; Eun-Hye Kwon; Min Seong Jang; Ryutaro Fukui; Atsuo Kanno; Da-Jung Jung; Myoung Ho Jang; Kensuke Miyake; You-Me Kim

Significance Toll-like receptors (TLRs) are key innate immune receptors that sense pathogen- or danger-associated molecules. The members of the TLR family can be classified into two groups based on their subcellular localization patterns—cell surface vs. endolysosomes—but how individual TLR is targeted to its destination is largely unknown. UNC93B1 was regarded to specifically bind the endolysosomal TLRs in the endoplasmic reticulum and deliver them to endolysosomes with no role for the surface-localized TLRs. In this study, we demonstrate that TLR5, a cell surface receptor for bacterial protein flagellin, also binds UNC93B1 and requires it for plasma membrane localization and signaling, thus revealing a previously unappreciated role of UNC93B1 in the regulation of the TLR family. The proper trafficking and localization of Toll-like receptors (TLRs) are important for specific ligand recognition and efficient signal transduction. The TLRs sensing bacterial membrane components are expressed on the cell surface and recruit signaling adaptors to the plasma membrane upon stimulation. On the contrary, the nucleotide-sensing TLRs are mostly found inside cells and signal from the endolysosomes in an acidic pH-dependent manner. Trafficking of the nucleotide-sensing TLRs from the endoplasmic reticulum to the endolysosomes strictly depends on UNC93B1, and their signaling is completely abolished in the 3d mutant mice bearing the H412R mutation of UNC93B1. In contrast, UNC93B1 was considered to have no role for the cell surface-localized TLRs and signaling via TLR1, TLR2, TLR4, and TLR6 is normal in the 3d mice. Unexpectedly, we discovered that TLR5, a cell surface receptor for bacterial protein flagellin, also requires UNC93B1 for plasma membrane localization and signaling. TLR5 physically interacts with UNC93B1, and the cells from the 3d or UNC93B1-deficient mice not only lack TLR5 at the plasma membrane but also fail to secret cytokines and to up-regulate costimulatory molecules upon flagellin stimulation, demonstrating the essential role of UNC93B1 in TLR5 signaling. Our study reveals that the role of UNC93B1 is not limited to the TLRs signaling from the endolysosomes and compels the further probing of the mechanisms underlying the UNC93B1-assisted differential targeting of TLRs.


Journal of Immunology | 2014

Roles of the Cleaved N-Terminal TLR3 Fragment and Cell Surface TLR3 in Double-Stranded RNA Sensing

Yusuke Murakami; Ryutaro Fukui; Yuji Motoi; Atsuo Kanno; Takuma Shibata; Natsuko Tanimura; Shin-ichiroh Saitoh; Kensuke Miyake

TLR3 senses viral dsRNA in endolysosomes. The TLR3 ectodomain is cleaved by proteases such as cathepsins in endolysosomes. It remains controversial whether the N-terminal fragment of TLR3 ectodomain (TLR3N) is cleaved off or remains associated with the C-terminal TLR3 fragment (TLR3C). In addition to endosomes, TLR3 is reported to be expressed on the surface of human fibroblasts, but not of human monocyte-derived dendritic cells. Less is known about roles of TLR3N and cell surface TLR3 in dsRNA sensing. In this study, we show the cleavage site of the TLR3 ectodomain and cell surface expression of TLR3 on mouse primary immune cells. TLR3C, which started at 343S, was associated with TLR3N. Both TLR3N and TLR3C were required for activation of IFN-β and NF-κB promoters by dsRNA, demonstrating that dsRNA is sensed by the TLR3N+C complex. Newly established mAbs to mouse TLR3 revealed that cell surface TLR3 was highly expressed on splenic CD8+ dendritic cells and marginal zone B cells. Cell surface expression of TLR3 on these cells was dependent on the TLR-specific transporter Unc93B1. Although cell surface TLR3 was only weakly expressed on macrophages, TLR3 mAb specifically enhanced TLR3 responses to dsRNA. These results demonstrate that dsRNA is sensed by the TLR3N+C complex and that cell surface TLR3 is a promising target for modulating TLR3 responses.


Journal of Immunology | 2015

Species-Specific Minimal Sequence Motif for Oligodeoxyribonucleotides Activating Mouse TLR9

Jelka Pohar; Duško Lainšček; Ryutaro Fukui; Chikako Yamamoto; Kensuke Miyake; Roman Jerala; Mojca Benčina

Synthetic oligodeoxyribonucleotides (ODNs) containing unmethylated CpG recapitulate the activation of TLR9 by microbial DNA. ODNs are potent stimulators of the immune response in cells expressing TLR9. Despite extensive use of mice as experimental animals in basic and applied immunological research, the key sequence determinants that govern the activation of mouse TLR9 by ODNs have not been well defined. We performed a systematic investigation of the sequence motif of B class phosphodiester ODNs to identify the sequence properties that govern mouse TLR9 activation. In contrast to ODNs activating human TLR9, where the minimal sequence motif for the receptor activation comprises a pair of closely positioned CpGs we found that the mouse TLR9 requires a single CpG positioned 4–6 nt from the 5′-end. Activation is augmented by a 5′TCC sequence one to three nucleotides from the CG. The distance of the CG dinucleotide of four to six nucleotides from the 5′-end and the ODN’s length fine-tunes activation of mouse macrophages. Length of the ODN <23 and >29 nt decreases activation of dendritic cells. The ODNs with minimal sequence induce Th1-type cytokine synthesis in dendritic cells and confirm the expression of cell surface markers in B cells. Identification of the minimal sequence provides an insight into the sequence selectivity of mouse TLR9 and points to the differences in the receptor selectivity between species probably as a result of differences in the receptor binding sites.


Experimental Cell Research | 2012

Controlling systems of nucleic acid sensing-TLRs restrict homeostatic inflammation.

Ryutaro Fukui; Kensuke Miyake

Nucleic acid sensing-TLRs recognize pathogen-derived nucleic acids (NAs) and induce anti-microbial immune responses. NA-sensing TLRs are reported to have a risk of mistakenly responding to self-derived NAs and causing a variety of autoimmune diseases. To warrant innate immune responses without detrimental inflammation, NA-sensing TLRs need to be tightly controlled in multiple aspects including expression and downstream signaling pathways. Along this line, TLR7 vs 9 balance has emerged as a new mechanism that controls activation of RNA-sensor TLR7. In this review, we discuss mechanisms controlling NA-sensing TLRs and autoimmune diseases as consequences of the dysregulated control mechanisms.

Collaboration


Dive into the Ryutaro Fukui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge