S. A. Adediran
Wesleyan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. A. Adediran.
Bioorganic & Medicinal Chemistry | 2008
Senthil K. Perumal; S. A. Adediran; R. F. Pratt
A series of aryl and arylmethyl beta-aryl-beta-ketophosphonates have been prepared as potential beta-lactamase inhibitors. These compounds, as fast, reversible, competitive inhibitors, were most effective (micromolar K(i) values) against the class D OXA-1 beta-lactamase but had less activity against the OXA-10 enzyme. They were also quite effective against the class C beta-lactamase of Enterobacter cloacae P99 but less so against the class A TEM-2 enzyme. Reduction of the keto group to form the corresponding beta-hydroxyphosphonates led to reduced inhibitory activity. Molecular modeling, based on the OXA-1 crystal structure, suggested interaction of the aryl groups with the hydrophobic elements of the enzymes active site and polar interaction of the keto and phosphonate groups with the active site residues Ser 115, Lys 212 and Thr 213 and with the non-conserved Ser 258. Analysis of binding free energies showed that the beta-aryl and phosphonate ester aryl groups interacted cooperatively within the OXA-1 active site. Overall, the results suggest that quite effective inhibitors of class C and some class D beta-lactamases could be designed, based on the beta-ketophosphonate platform.
Bioorganic & Medicinal Chemistry | 2001
S. A. Adediran; Daniel Cabaret; B Drouillat; R. F. Pratt; Michel Wakselman
Abstract 6- and 7-Carboxy-3-phenylacetamido-3 H -1-benzofuran-2-one have been synthesized as potential β-lactamase substrates and/or inhibitors. These compounds were prepared by lactonization of the corresponding, appropriately substituted phenylglycines. The latter compounds were prepared by either the Strecker or the Bucherer–Berg method. The benzofuran-2-ones were less stable in aqueous solution than the analogous acyclic phenaceturate esters but comparably stable to analogous benzopyran-2-ones. They differed from the latter compounds however in that the C-3 hydrogen of the furan-2-ones, adjacent to the lactone carbonyl group, was distinctly acidic; 7-carboxy-3-phenylacetamido-3 H -1-benzofuran-2-one exists largely as an enolate at pH 7.5. The furan-2-ones were β-lactamase substrates with reactivity very similar to the analogous acyclic phenaceturates. They were not, however, dd -peptidase inhibitors and are thus unlikely to have antibiotic activity. The structural basis for these observations is discussed.
Biochemical Journal | 2003
John W. Anderson; S. A. Adediran; Paulette Charlier; Martine Nguyen-Distèche; Jean-Marie Frère; Robert A. Nicholas; R. F. Pratt
The reactions between bacterial DD-peptidases and beta-lactam antibiotics have been studied for many years. Less well understood are the interactions between these enzymes and their natural substrates, presumably the peptide moieties of peptidoglycan. In general, remarkably little activity has previously been demonstrated in vitro against potential peptide substrates, although in many cases the peptides employed were non-specific and not homologous with the relevant peptidoglycan. In this paper, the specificity of a panel of DD-peptidases against elements of species-specific D-alanyl-D-alanine peptides has been assessed. In two cases, those of soluble, low-molecular-mass DD-peptidases, high activity against the relevant peptides has been demonstrated. In these cases, the high specificity is towards the free N-terminus of the peptidoglycan fragment. With a number of other enzymes, particularly high-molecular-mass DD-peptidases, little or no activity against these peptides was observed. In separate experiments, the reactivity of the enzymes against the central, largely invariant, peptide stem was examined. None of the enzymes surveyed showed high activity against this structural element although weak specificity in the expected direction towards the one structural variable (D-gammaGln versus D-gammaGlu) was observed. The current state of understanding of the activity of these enzymes in vitro is discussed.
Biochemistry | 2011
Venkatesh V. Nemmara; Liudmila Dzhekieva; Kumar Subarno Sarkar; S. A. Adediran; Colette Duez; Robert A. Nicholas; R. F. Pratt
The bacterial DD-peptidases or penicillin-binding proteins (PBPs) catalyze the formation and regulation of cross-links in peptidoglycan biosynthesis. They are classified into two groups, the high-molecular mass (HMM) and low-molecular mass (LMM) enzymes. The latter group, which is subdivided into classes A-C (LMMA, -B, and -C, respectively), is believed to catalyze DD-carboxypeptidase and endopeptidase reactions in vivo. To date, the specificity of their reactions with particular elements of peptidoglycan structure has not, in general, been defined. This paper describes the steady-state kinetics of hydrolysis of a series of specific peptidoglycan-mimetic peptides, representing various elements of stem peptide structure, catalyzed by a range of LMM PBPs (the LMMA enzymes, Escherichia coli PBP5, Neisseria gonorrhoeae PBP4, and Streptococcus pneumoniae PBP3, and the LMMC enzymes, the Actinomadura R39 dd-peptidase, Bacillus subtilis PBP4a, and N. gonorrhoeae PBP3). The R39 enzyme (LMMC), like the previously studied Streptomyces R61 DD-peptidase (LMMB), specifically and rapidly hydrolyzes stem peptide fragments with a free N-terminus. In accord with this result, the crystal structures of the R61 and R39 enzymes display a binding site specific to the stem peptide N-terminus. These are water-soluble enzymes, however, with no known specific function in vivo. On the other hand, soluble versions of the remaining enzymes of those noted above, all of which are likely to be membrane-bound and/or associated in vivo and have been assigned particular roles in cell wall biosynthesis and maintenance, show little or no specificity for peptides containing elements of peptidoglycan structure. Peptidoglycan-mimetic boronate transition-state analogues do inhibit these enzymes but display notable specificity only for the LMMC enzymes, where, unlike peptide substrates, they may be able to effectively induce a specific active site structure. The manner in which LMMA (and HMM) DD-peptidases achieve substrate specificity, both in vitro and in vivo, remains unknown.
FEBS Letters | 2012
S. A. Adediran; Gang Lin; R. B. Pelto; R. F. Pratt
O‐Aryloxycarbonyl hydroxamates and 1,3,4‐oxathiazol‐2‐ones have been identified as covalent inhibitors of β‐lactamases and proteasomes, respectively. The products of these inhibition reactions are remarkably similar, involving carbonyl cross‐linking of the active sites. We have cross‐checked these inhibitors, showing that the former inhibit proteasomes and the latter β‐lactamases, to form the same inactive carbonyl adducts. These results are discussed in terms of similarities of the active site structures and catalytic mechanisms. It is likely that a mechanistic imperative has led to convergent evolution of these enzyme active sites, of a β‐lactam‐recognizing enzyme and a N‐terminal protease belonging to different amidohydrolase superfamilies.
Bioorganic & Medicinal Chemistry | 2010
S. A. Adediran; Daniel Cabaret; J.-F. Lohier; Michel Wakselman; R. F. Pratt
A series of substituted aryl malonamates have been prepared. These compounds are analogues of aryl phenaceturates where the amido side chain has been replaced by a retro-amide. Like the phenaceturates, these compounds are substrates of typical class A and class C beta-lactamases, particularly of the latter, and of soluble DD-peptidases. The effect of substituents alpha to the ester carbonyl group on turnover by these enzymes is similar to that in the phenaceturates. On the other hand, N-alkylation of the side chain amide of malonamates, but not of phenaceturates, retains the susceptibility of the compounds to hydrolysis by beta-lactamases. This reactivity is not enhanced, however, by bridging the amide nitrogen and Calpha atoms. A phosphonate analogue of the malonamates was found to be an irreversible inhibitor of the beta-lactamases. These results, therefore, provide further evidence for the covalent access of compounds bearing retro-amide side chains to the active sites of beta-lactam-recognizing enzymes.
Biochemistry | 2013
Liudmila Dzhekieva; S. A. Adediran; Raphaël Herman; Frédéric Kerff; Colette Duez; Paulette Charlier; Eric Sauvage; R. F. Pratt
Inhibitors of bacterial DD-peptidases represent potential antibiotics. In the search for alternatives to β-lactams, we have investigated a series of compounds designed to generate transition state analogue structures upon reaction with DD-peptidases. The compounds contain a combination of a peptidoglycan-mimetic specificity handle and a warhead capable of delivering a tetrahedral anion to the enzyme active site. The latter includes a boronic acid, two alcohols, an aldehyde, and a trifluoroketone. The compounds were tested against two low-molecular mass class C DD-peptidases. As expected from previous observations, the boronic acid was a potent inhibitor, but rather unexpectedly from precedent, the trifluoroketone [D-α-aminopimelyl(1,1,1-trifluoro-3-amino)butan-2-one] was also very effective. Taking into account competing hydration, we found the trifluoroketone was the strongest inhibitor of the Actinomadura R39 DD-peptidase, with a subnanomolar (free ketone) inhibition constant. A crystal structure of the complex between the trifluoroketone and the R39 enzyme showed that a tetrahedral adduct had indeed formed with the active site serine nucleophile. The trifluoroketone moiety, therefore, should be considered along with boronic acids and phosphonates as a warhead that can be incorporated into new and effective DD-peptidase inhibitors and therefore, perhaps, antibiotics.
Biochemistry | 2013
Venkatesh V. Nemmara; S. A. Adediran; Kinjal Dave; Colette Duez; R. F. Pratt
Bacterial dd-peptidases are the targets of the β-lactam antibiotics. The sharp increase in bacterial resistance toward these antibiotics in recent years has stimulated the search for non-β-lactam alternatives. The substrates of dd-peptidases are elements of peptidoglycan from bacterial cell walls. Attempts to base dd-peptidase inhibitor design on peptidoglycan structure, however, have not been particularly successful to date because the specific substrates for most of these enzymes are unknown. It is known, however, that the preferred substrates of low-molecular mass (LMM) class B and C dd-peptidases contain the free N-terminus of the relevant peptidoglycan. Two very similar LMMC enzymes, for example, the Actinomadura R39 dd-peptidase and Bacillus subtilis PBP4a, recognize a d-α-aminopimelyl terminus. The peptidoglycan of B. subtilis in the vegetative stage, however, has the N-terminal d-α-aminopimelyl carboxylic acid amidated. The question is, therefore, whether the dd-peptidases of B. subtilis are separately specific to carboxylate or carboxamide or have dual specificity. This paper describes an investigation of this issue with B. subtilis PBP4a. This enzyme was indeed found to have a dual specificity for peptide substrates, both in the acyl donor and in the acyl acceptor sites. In contrast, the R39 dd-peptidase, from an organism in which the peptidoglycan is not amidated, has a strong preference for a terminal carboxylate. It was also found that acyl acceptors, reacting with acyl-enzyme intermediates, were preferentially d-amino acid amides for PBP4a and the corresponding amino acids for the R39 dd-peptidase. Examination of the relevant crystal structures, aided by molecular modeling, suggested that the expansion of specificity in PBP4a accompanies a change of Arg351 in the R39 enzyme and most LMMC dd-peptidases to histidine in PBP4a and its orthologs in other Bacillus sp. This histidine, in neutral form at pH 7, appeared to be able to favorably interact with both carboxylate and carboxamide termini of substrates, in agreement with the kinetic data. It may still be possible, in specific cases, to combat bacteria with new antibiotics based on particular elements of their peptidoglycan structure.
Bioorganic & Medicinal Chemistry Letters | 1999
S. A. Adediran; Daniel Cabaret; R.F. Pratt; Michel Wakselman
The cyclic depsipeptide 8-carboxy-3-phenylacetamido-3,4-dihydro-2H-1-benzopyran-2-one, a cyclic analog of aryl phenaceturates with structural similarity to cephalosporins, has been synthesized as a potential substrate/inhibitor of B-lactam-recognizing enzymes. It was found to be a tight-binding, poor substrate of class A beta-lactamases and an irreversible inhibitor of several DD-peptidases.
Biochemistry | 2014
Liudmila Dzhekieva; S. A. Adediran; R. F. Pratt
Specific boronic acids are generally powerful tetrahedral intermediate/transition state analogue inhibitors of serine amidohydrolases. This group of enzymes includes bacterial β-lactamases and DD-peptidases where there has been considerable development of boronic acid inhibitors. This paper describes the synthesis, determination of the inhibitory activity, and analysis of the results from two α-(2-thiazolidinyl) boronic acids that are closer analogues of particular tetrahedral intermediates involved in β-lactamase and DD-peptidase catalysis than those previously described. One of them, 2-[1-(dihydroxyboranyl)(2-phenylacetamido)methyl]-5,5-dimethyl-1,3-thiazolidine-4-carboxylic acid, is a direct analogue of the deacylation tetrahedral intermediates of these enzymes. These compounds are micromolar inhibitors of class C β-lactamases but, very unexpectedly, not inhibitors of class A β-lactamases. We rationalize the latter result on the basis of a new mechanism of boronic acid inhibition of the class A enzymes. A stable inhibitory complex is not accessible because of the instability of an intermediate on its pathway of formation. The new boronic acids also do not inhibit bacterial DD-peptidases (penicillin-binding proteins). This result strongly supports a central feature of a previously proposed mechanism of action of β-lactam antibiotics, where deacylation of β-lactam-derived acyl-enzymes is not possible because of unfavorable steric interactions.