S. A. Gardiner
Durham University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. A. Gardiner.
Physical Review Letters | 1997
S. A. Gardiner; J. I. Cirac; P. Zoller
We propose an experimental configuration, within an ion trap, by which a quantum mechanical delta-kicked harmonic oscillator could be realized, and investigated. We show how to directly measure the sensitivity of the ion motion to small variations in the external parameters.
Nature Communications | 2013
A. L. Marchant; T. P. Billam; Timothy P. Wiles; M. P. Yu; S. A. Gardiner; Simon L. Cornish
Bright solitons are non-dispersive wave solutions, arising in a diverse range of nonlinear, one-dimensional systems, including atomic Bose–Einstein condensates with attractive interactions. In reality, cold-atom experiments can only approach the idealized one-dimensional limit necessary for the realization of true solitons. Nevertheless, it remains possible to create bright solitary waves, the three-dimensional analogue of solitons, which maintain many of the key properties of their one-dimensional counterparts. Such solitary waves offer many potential applications and provide a rich testing ground for theoretical treatments of many-body quantum systems. Here we report the controlled formation of a bright solitary matter-wave from a Bose–Einstein condensate of 85Rb, which is observed to propagate over a distance of ∼1.1 mm in 150 ms with no observable dispersion. We demonstrate the reflection of a solitary wave from a repulsive Gaussian barrier and contrast this to the case of a repulsive condensate, in both cases finding excellent agreement with theoretical simulations using the three-dimensional Gross–Pitaevskii equation.
Physical Review Letters | 2007
A. Martin; C. S. Adams; S. A. Gardiner
Collisions between bright solitary waves in the 1D Gross-Pitaevskii equation with a harmonic potential, which models a trapped atomic Bose-Einstein condensate, are investigated theoretically. A particle analogy for the solitary waves is formulated and shown to be integrable for a two-particle system. The extension to three particles is shown to support chaotic regimes. Good agreement is found between the particle model and simulations of the full wave dynamics, suggesting that the dynamics can be described in terms of solitons both in regular and chaotic regimes, presenting a paradigm for chaos in wave mechanics.
Journal of Physics B | 2004
Krzysztof Góral; Thorsten Köhler; S. A. Gardiner; Eite Tiesinga; Paul S. Julienne
We consider in detail the situation of applying a time-dependent external magnetic field to a 87Rb atomic Bose–Einstein condensate held in a harmonic trap, in order to adiabatically sweep the interatomic interactions across a Feshbach resonance to produce diatomic molecules. To this end, we introduce a minimal two-body Hamiltonian depending on just five measurable parameters of a Feshbach resonance, which accurately determines all low-energy binary scattering observables, in particular, the molecular conversion efficiency of just two atoms. Based on this description of the microscopic collision phenomena, we use the many-body theory of Kohler and Burnett (2002 Phys. Rev. A 65 033601) to study the efficiency of the association of molecules in a 87Rb Bose–Einstein condensate during a linear passage of the magnetic-field strength across the 100 mT Feshbach resonance. We explore different, experimentally accessible, parameter regimes, and compare the predictions of Landau–Zener, configuration interaction, and two-level mean-field calculations with those of the microscopic many-body approach. Our comparative studies reveal a remarkable insensitivity of the molecular conversion efficiency with respect to both the details of the microscopic binary collision physics and the coherent nature of the Bose–Einstein condensed gas, provided that the magnetic-field strength is varied linearly. We provide the reasons for this universality of the molecular production achieved by linear ramps of the magnetic-field strength, and identify the Landau–Zener coefficient determined by Mies et al (2000 Phys. Rev. A 61 022721) as the main parameter that controls the efficiency.
Physical Review Letters | 2001
Dieter Jaksch; S. A. Gardiner; K. Schulze; J. I. Cirac; P. Zoller
The relative phase of two initially independent Bose-Einstein condensates can be laser cooled to unite the two condensates by putting them into a ring cavity and coupling them with an internal Josephson junction. First, we show that this phase cooling process already appears within a semiclassical model. We calculate the stationary states, find regions of bistable behavior, and suggest a Ramsey-type experiment to measure the buildup of phase coherence between the condensates. We also study quantum effects and imperfections of the system.
Physical Review A | 2007
S. A. Gardiner; S. A. Morgan
We describe a number-conserving approach to the dynamics of Bose-Einstein condensed dilute atomic gases. This builds upon the works of Gardiner [Phys. Rev. A 56, 1414 (1997)] and Castin and Dum [Phys. Rev. A 57, 3008 (1998)]. We consider what is effectively an expansion in powers of the ratio of noncondensate to condensate particle numbers, rather than inverse powers of the total number of particles. This requires the number of condensate particles to be a majority, but not necessarily almost equal to the total number of particles in the system. We argue that a second-order treatment of the relevant dynamical equations of motion is the minimum order necessary to provide consistent coupled condensate and noncondensate number dynamics for a finite total number of particles, and show that such a second-order treatment is provided by a suitably generalized Gross-Pitaevskii equation, coupled to the Castin-Dum number-conserving formulation of the Bogoliubov\char21{}de Gennes equations. The necessary equations of motion can be generated from an approximate third-order Hamiltonian, which effectively reduces to second order in the steady state. Such a treatment as described here is suitable for dynamics occurring at finite temperature, where there is a significant noncondensate fraction from the outset, or dynamics leading to dynamical instabilities, where depletion of the condensate can also lead to a significant noncondensate fraction, even if the noncondensate fraction is initially negligible.
Physical Review Letters | 2016
Robert J. Bettles; S. A. Gardiner; C. S. Adams
Enhancing the optical cross section is an enticing goal in light-matter interactions, due to its fundamental role in quantum and nonlinear optics. Here, we show how dipolar interactions can suppress off-axis scattering in a two-dimensional atomic array, leading to a subradiant collective mode where the optical cross section is enhanced by almost an order of magnitude. As a consequence, it is possible to attain an optical depth which implies high-fidelity extinction, from a monolayer. Using realistic experimental parameters, we also model how lattice vacancies and the atomic trapping depth affect the transmission, concluding that such high extinction should be possible, using current experimental techniques.
Physical Review Letters | 2003
S. Schlunk; Michael d'Arcy; S. A. Gardiner; Gil Summy
Using a freely falling cloud of cold cesium atoms periodically kicked by pulses from a vertical standing wave of laser light, we present the first experimental observation of high-order quantum accelerator modes. This confirms the recent prediction by Fishman, Guarneri, and Rebuzzini [Phys. Rev. Lett. 89, 084101 (2002)]]. We also show how these accelerator modes can be identified with the stable regions of phase space in a classical-like chaotic system, despite their intrinsically quantum origin.
Physical Review Letters | 2003
S. Schlunk; Michael d'Arcy; S. A. Gardiner; Donatella Cassettari; R. M. Godun; Gil Summy
We experimentally and numerically investigate the quantum accelerator mode dynamics of an atom optical realization of the quantum delta-kicked accelerator, whose classical dynamics are chaotic. Using a Ramsey-type experiment, we observe interference, demonstrating that quantum accelerator modes are formed coherently. We construct a link between the behavior of the evolutions fidelity and the phase space structure of a recently proposed pseudoclassical map, and thus account for the observed interference visibilities.
Physical Review A | 2011
T. P. Billam; Simon L. Cornish; S. A. Gardiner
We propose a method to split the ground state of an attractively interacting atomic Bose-Einstein condensate into two bright solitary waves with controlled relative phase and velocity. We analyze the stability of these waves against their subsequent recollisions at the center of a cylindrically symmetric, prolate harmonic trap as a function of relative phase, velocity, and trap anisotropy. We show that the collisional stability is strongly dependent on relative phase at low velocity, and we identify previously unobserved oscillations in the collisional stability as a function of the trap anisotropy. An experimental implementation of our method would determine the validity of the mean-field description of bright solitary waves and could prove to be an important step toward atom interferometry experiments involving bright solitary waves.