S. Antón
University of Lisbon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Antón.
Astronomy and Astrophysics | 2008
S. Antón; I. W. A. Browne; M. J. M. Marchã
Aims. We investigate the properties of the host galaxy of the blazar J0324+3410 (B2 0321+33) by the analysis of B and R images obtained with the NOT under good photometric conditions. Methods. The galaxy was studied using different methods: Sersic model fitting, unsharp-masked images, B -R image and B -R profile analysis. Results. The images show that the host galaxy has a ring-like morphology. The B - R colour image reveals two bluish zones: one that coincides with the nuclear region, interpreted as the signature of emission related to the active nucleus, the other zone is extended and is located in the host ring-structure. We discuss the hypothesis that the later is thermal emission from a burst of star formation triggered by an interacting/merging process.
The Astrophysical Journal | 2014
J. León Tavares; J. K. Kotilainen; V. Chavushyan; C. Añorve; I. Puerari; Irene Cruz-Gonzalez; V. Patiño-Alvarez; S. Antón; A. Carramiñana; L. Carrasco; J. Guichard; K. Karhunen; A. Olguín-Iglesias; J. Sanghvi; J. Valdes
We present optical and near-infrared (NIR) imaging data of the radio-loud, narrow-line Seyfert 1 galaxy 1H 0323+342, which shows intense and variable gamma-ray activity discovered by the Fermi satellite with the Large Area Telescope. Near-infrared and optical images are used to investigate the structural properties of the host galaxy of 1H 0323+342; this together with optical spectroscopy allows us to examine its black hole mass. Based on two-dimensional (2D) multiwavelength surface-brightness modeling, we find that statistically, the best model fit is a combination of a nuclear component and a Sersic profile (n ∼ 2.8). However, the presence of a disk component (with a small bulge n ∼ 1.2) also remains a possibility and cannot be ruled out with the present data. Although at first glance a spiral-arm-like structure is revealed in our images, a 2D Fourier analysis of the imagery suggests that this structure corresponds to an asymmetric ring, likely associated with a recent violent dynamical interaction. We discuss our results in the context of relativistic jet production and galaxy evolution.
Astronomy and Astrophysics | 2012
L. Č. Popović; P. Jovanović; Marko Stalevski; S. Antón; Alexandre H. Andrei; Jelena Kovacevic; M. Baes
Context. We study the photocenter position variability caused by variations in the quasar inner structure. We consider the variability in the accretion disk emissivity and torus structure variability caused by the different illumination by the central source. We discuss the possible detection of these effects by Gaia. Observations of the photocenter variability in two AGNs, SDSS J121855+020002 and SDSS J162011+1724327 have been reported and discussed. Aims. For variations in the quasar inner structure, we explore how much this effect can affect the position determination and whether it can (or not) be detected with the Gaia mission. Methods. We use models of (a) a relativistic disk, including the perturbation that can increase the brightness of part of the disk, and consequently offset the photocenter position, and (b) a dusty torus that absorbs and re-emits the incoming radiation from the accretion disk (central continuum source). We estimate the value of the photocenter offset caused by these two effects. Results. We found that perturbations in the inner structure can cause a significant offset to the photocenter. This offset depends on the characteristics of both the perturbation and accretion disk and on the structure of the torus. In the case of the two considered QSOs, the observed photocenter offsets cannot be explained by variations in the accretion disk and other effects should be considered. We discuss the possibility of exploding stars very close to the AGN source, and also that there are two variable sources at the center of these two AGNs that may indicate a binary supermassive black hole system on a kpc (pc) scale. Conclusions. The Gaia mission seems to be very promising, not only for astrometry, but also for exploring the inner structure of AGNs. We conclude that variations in the quasar inner structure can affect the observed photocenter (by up to several mas). There is a chance to observe such an effect in the case of bright and low-redshift QSOs.
Astronomy and Astrophysics | 2011
F. Taris; J. Souchay; A. H. Andrei; M. Bernard; M. Salabert; S. Bouquillon; S. Antón; Stephen B. Lambert; A.-M. Gontier; C. Barache
Context. The current conventional realization of the ICRS (International Celestial Reference System) is, in the radio wavelength, the International Celestial Reference Frame 2 (ICRF2). The individual positions of the defining sources have been found to have accuracies better than 1 milliarcsecond (mas). In 2012, the European astrometric satellite Gaia will be launched. This mission will provide an astrometric catalog of an estimated number of 500000 QSOs. The uncertainty in the coordinates is anticipated to be 200 microarcsecond (μas) for the magnitude = 20. If this were achieved, the ICRF and the Gaia related reference frame could be related with a μas accuracy. Aims. The goal of this work is both to measure the photometric variability of a set of quasars in a given field, and search wether this variability can be related to an astrometric instability characterized by a motion of the quasar photocenter. If this correlation existed for some given QSO, then it would be inadequate to materialize the Gaia extragalactic reference frame at the level of confidence required, i.e. the sub-milliarcsecond one. This should be an important result in the scope of the Gaia mission. Methods. We use QSO CCD images obtained over 4.5 years with the Canada France Hawai Telescope (CFHT) in the framework of the CFHT-Legacy Survey (CFHT-LS). The pictures were analysed with both the SExtractor software and customised codes to perform a photometric calibration together with an astrometric one. A total of 41 QSOs in the Deep 2 field were analysed. Magnitude variations during more than 50 months are given at three different bandwiths G, R, and I. Among the set above, 5 quasars were chosen to test the ties between the postion of their centroid and their magnitude variations. For one of these 5 QSOs, the proximity of a neighbouring star allows the comparison between the PSFs. Results. We clearly show significant photometric variations reaching sometimes more than one magnitude, for a good proportion of the 41 quasars in our sample. We show that these variations often occur within a few months, and that the correlation between the photometric curves in the three bands, G, R and I is obvious. As a second important result, we show that with a reasonably high probability, photometric variations for one quasar in our sample are accompagnied by substantial modification of its PSF.
Astronomy and Astrophysics | 2013
F. Taris; Alexandre Humberto Andrei; Alain Klotz; Frederic Vachier; R. Côte; S. Bouquillon; J. Souchay; S. Lambert; S. Antón; G. Bourda; David Coward
Context. The astrometric mission Gaia of the European Space Agency is scheduled to be launched in 2013. It will provide an astrometric catalog of 500 000 extragalactic sources that could be the basis of a new optical reference frame after the Hipparcos satellite one. On the other hand, the current International Celestial Reference Frame (ICRF) is based on observations of extragalactic sources at radio wavelength. The astrometric coordinates of sources in these two reference systems will have roughly the same uncertainty. It is then mandatory to observe a set of common targets at both optical and radio wavelengths to link the ICRF with what could be called the Gaia Celestial Reference Frame (GCRF). Aims. The goal of this work is to observe a first set of 70 extragalactic sources at optical wavelengths that could achieve the link with the ICRF. Variations in the light curves of these targets are connected with astrophysical processes that could produce displacements of the optical photocenter. Such displacements, if they exist, are critical in the framework of the link of reference systems. Methods. Four telescopes were used to observe the targets at optical wavelengths. Two of them are located in France, one in Chile, and the last one in Australia. First observations were carried out during one year and a half in the R and V bands. A new method of characterizing the compactness of the targets was applied to the images obtained. Results. This paper presents results for the optical monitoring of extragalactic sources suitable for linking reference systems. We show that a large number of targets in our set are variable at the two observational wavelengths. A short presentation of each object is given, along with some references to earlier photometric studies. A morphological index is defined and applied to the 5000 images obtained during the observation campaign. Conclusions. This work fits into a more general project of astrophotometric and astrophysical studies of extragalactic radiosources in the framework of the reference systems. It brings to the astrometric community some information at optical wavelengths about a set of targets that could be used for the link between the radio ICRF and the future GCRF.
Monthly Notices of the Royal Astronomical Society | 2005
M. J. M. Marchã; I. W. A. Browne; N. Jethava; S. Antón
We address the question of whether or not the properties of all low-luminosity flat spectrum radio sources, not just the obvious BL Lac objects, are consistent with them being the relativistically beamed counterparts of the low radio luminosity radio galaxies (the Fanaroff-Riley type 1, FR I). We have accumulated data on a well-defined sample of low redshift, core-dominated, radio sources all of which have one-sided core-jet structures seen with very long baseline interferometry, just like most BL Lac objects. We first compare the emission-line luminosities of the sample of core-dominated radio sources with a matched sample of FR I radio galaxies. The emission lines in the core-dominated objects are on average significantly more luminous than those in the comparison sample, inconsistent with the simplest unified models in which there is no orientation dependence of the line emission. We then compare the properties of our core-dominated sample with those of a sample of radio-emitting UGC galaxies selected without bias to core strength. The core-dominated objects fit well on the UGC correlation between line emission and radio core strength found by Verdoes Kleijn et al. The results are not consistent with all the objects participating in a simple unified model in which the observed line emission is orientation independent, though they could fit a single, unified model provided that some FR I radio galaxies have emission line regions that become more visible when viewed along the jet axis. However, they are equally consistent with a scenario in which, for the majority of objects, beaming has minimal effect on the observed core luminosities of a large fraction of the FR I population and that intrinsically stronger cores simply give rise to stronger emission lines. We conclude that FR I unification is much more complex than usually portrayed, and models combining beaming with an intrinsic relationship between core and emission line strengths need to be explored.
The Astrophysical Journal | 2014
L. Bizzocchi; Mercedes E. Filho; Elvira Leonardo; Roger L. Griffith; J. Afonso; Cristina I. Fernandes; João Retrê; S. Antón; Eric F. Bell; Jarle Brinchmann; Bruno M. B. Henriques; Catarina Lobo; Hugo Messias
We present a catalog of bulgeless galaxies, which includes 19,225 objects selected in four of the deepest, largest multi-wavelength data sets available—COSMOS, AEGIS, GEMS, and GOODS—at intermediate redshift (0.4 ≤ z ≤ 1.0). The morphological classification was provided by the Advanced Camera for Surveys General Catalog (ACS-GC), which used publicly available data obtained with the ACS instrument on the Hubble Space Telescope. Rest-frame photometric quantities were derived using kcorrect. We analyze the properties of the sample and the evolution of pure-disk systems with redshift. Very massive [log (M_*/M_☉) > 10.5] bulgeless galaxies contribute to ~30% of the total galaxy population number density at z ≥ 0.7, but their number density drops substantially with decreasing redshift. We show that only a negligible fraction of pure disks appear to be quiescent systems, and red sequence bulgeless galaxies show indications of dust-obscured star formation. X-ray catalogs were used to search for X-ray emission within our sample. After visual inspection and detailed parametric morphological fitting we identify 30 active galactic nuclei (AGNs) that reside in galaxies without a classical bulge. The finding of such peculiar objects at intermediate redshift shows that while AGN growth in merger-free systems is a rare event (0.2% AGN hosts in this sample of bulgeless galaxies), it can indeed happen relatively early in the history of the universe.
Monthly Notices of the Royal Astronomical Society | 2013
Bruno Coelho; S. Antón; Catarina Lobo; Bruno Ribeiro
With the main goal of finding bulgeless galaxies harbouring super massive black holes and showing, at most, just residual star formation activity, we have selected a sample of massive bulgeless red sequence galaxies from the SDSS-DR7, based on the NYU-VAGC catalogue. Multivavelength data were retrieved using EURO-VO tools, and the objects are characterised in terms of degree of star formation and the presence of an AGN. We have found seven objects that are quenched massive galaxies, that have no prominent bulge and that show signs of extra activity in their nuclei, five of them being central in their halo. These objects are rather robust candidates for rare systems that, though devoid of a significant bulge, harbor a supermassive black hole with an activity level likely capable of having halted the star formation through feedback.
Archive | 2011
Bruno Coelho; Catarina Lobo; S. Antón
We selected bulgeless red sequence galaxies in the SDSS (DR7) [Abazajian et al., ApJS 182, 543 (2009)] using data from NYU-VAGC [Blanton et al., AJ 129, 2562 (2005)]. Using EURO-VO tools we obtained multiwavelength data, we built spectral energy distributions, and undertook a thorough analysis to ascertain: the frequency of AGN among these galaxies, the degree of star formation and intrinsic extinction. We aim at verifying whether there are bulgeless quenched galaxies hosting SMBHs in order to test the AGN feedback paradigm.
Proceedings of SPIE | 2008
Paulo Garcia; Jean-Philippe Berger; A. Marconi; Alexander V. Krivov; A. Chiavassa; Bernard Aringer; B. Nisini; Denis Defrere; Dimitri Mawet; D. Schertl; Eric Tatuli; Éric Thiébaut; Fabien Baron; Fabien Malbet; Gaspard Duchene; Gerd Weigelt; Gilles Duvert; G. Henri; Hubert Klahr; Jean Surdej; J.-C. Augereau; Jean-François Claeskens; John S. Young; Josef Hron; K. Perraut; Karl-Heinz Hofmann; Leonardo Testi; Margarida Cunha; Mercedes E. Filho; Michaël De Becker
We present the work developed within the science team of the Very Large Telescope Interferometer Spectro-Imager (VSI) during the Phase A studies. VSI aims at delivering ~ 1 milliarcsecond resolution data cubes in the near-infrared, with several spectral resolutions up to 12 000, by combining up to 8 VLTI telescopes. In the design of an instrument, the science case plays a central role by supporting the instrument construction decision, defining the top-level requirements and balancing design options. The overall science philosophy of VSI was that of a general user instrument serving a broad community. The science team addressed themes which included several areas of astrophysics and illustrated specific modes of operation of the instrument: a) YSO disks and winds; b) Multiplicity of young stars; c) Exoplanets; d) Debris disks; e) Stellar surface imaging; f) The environments of evolved stars; g) AGN tori; h) AGNs Broad Line Region; i) Supermassive black-holes; and j) Microlensing. The main conclusions can be summarized as follows: a) The accessible targets and related science are extremely sensitive to the instrument limiting magnitude; the instrument should be optimized for sensitivity and have its own fringe tracker. b) Most of the science cases are readily achievable with on-axis fringe tracking, off-axis fringe tracking enabling extra science. c) In most targets (YSOs, evolved stars and AGNs), the interpretation and analysis of circumstellar/nuclear dust morphology requires direct access to the gas via spectral resolved studies of emission lines, requiring at least a spectral resolution of 2 500. d) To routinely deliver images at the required sensitivity, the number of telescopes in determinant, with 6 telescopes being favored. e) The factorial increase in the number of closure phases and visibilities, gained in a single observation, makes massive surveys of parameters and related science for the first time possible. f) High dynamic range imaging and very high dynamic range differential closure phase are possible allowing the study of debris disks and characterization of pegasides. g) Spectro-imaging in the near-infrared is highly complementary to ALMA, adaptive optics and interferometric imaging in the thermal infrared.