Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Armando Villalta is active.

Publication


Featured researches published by S. Armando Villalta.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Regulatory interactions between muscle and the immune system during muscle regeneration

James G. Tidball; S. Armando Villalta

Recent discoveries reveal complex interactions between skeletal muscle and the immune system that regulate muscle regeneration. In this review, we evaluate evidence that indicates that the response of myeloid cells to muscle injury promotes muscle regeneration and growth. Acute perturbations of muscle activate a sequence of interactions between muscle and inflammatory cells. The initial inflammatory response is a characteristic Th1 inflammatory response, first dominated by neutrophils and subsequently by CD68(+) M1 macrophages. M1 macrophages can propagate the Th1 response by releasing proinflammatory cytokines and cause further tissue damage through the release of nitric oxide. Myeloid cells in the early Th1 response stimulate the proliferative phase of myogenesis through mechanisms mediated by TNF-alpha and IL-6; experimental prolongation of their presence is associated with delayed transition to the early differentiation stage of myogenesis. Subsequent invasion by CD163(+)/CD206(+) M2 macrophages attenuates M1 populations through the release of anti-inflammatory cytokines, including IL-10. M2 macrophages play a major role in promoting growth and regeneration; their absence greatly slows muscle growth following injury or modified use and inhibits muscle differentiation and regeneration. Chronic muscle injury leads to profiles of macrophage invasion and function that differ from acute injuries. For example, mdx muscular dystrophy yields invasion of muscle by M1 macrophages, but their early invasion is accompanied by a subpopulation of M2a macrophages. M2a macrophages are IL-4 receptor(+)/CD206(+) cells that reduce cytotoxicity of M1 macrophages. Subsequent invasion of dystrophic muscle by M2c macrophages is associated with progression of the regenerative phase in pathophysiology. Together, these findings show that transitions in macrophage phenotype are an essential component of muscle regeneration in vivo following acute or chronic muscle damage.


Journal of Clinical Investigation | 2007

Interplay of IKK/NF-κB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy

Swarnali Acharyya; S. Armando Villalta; Nadine Bakkar; Tepmanas Bupha-Intr; Paul M. L. Janssen; Micheal Carathers; Zhi-Wei Li; Amer A. Beg; Sankar Ghosh; Zarife Sahenk; Michael Weinstein; Katherine L. Gardner; Jill A. Rafael-Fortney; Michael Karin; James G. Tidball; Albert S. Baldwin; Denis C. Guttridge

Duchenne muscular dystrophy (DMD) is a lethal X-linked disorder associated with dystrophin deficiency that results in chronic inflammation and severe skeletal muscle degeneration. In DMD mouse models and patients, we find that IkappaB kinase/NF-kappaB (IKK/NF-kappaB) signaling is persistently elevated in immune cells and regenerative muscle fibers. Ablation of 1 allele of the p65 subunit of NF-kappaB was sufficient to improve pathology in mdx mice, a model of DMD. In addition, conditional deletion of IKKbeta in mdx mice elucidated that NF-kappaB functions in activated macrophages to promote inflammation and muscle necrosis and in skeletal muscle fibers to limit regeneration through the inhibition of muscle progenitor cells. Furthermore, specific pharmacological inhibition of IKK resulted in improved pathology and muscle function in mdx mice. Collectively, these results underscore the critical role of NF-kappaB in the progression of muscular dystrophy and suggest the IKK/NF-kappaB signaling pathway as a potential therapeutic target for DMD.


Human Molecular Genetics | 2008

Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy

S. Armando Villalta; Hal X. Nguyen; Bo Deng; Tomomi Gotoh; James G. Tidball

Duchenne muscular dystrophy (DMD) is the most common, lethal, muscle-wasting disease of childhood. Previous investigations have shown that muscle macrophages may play an important role in promoting the pathology in the mdx mouse model of DMD. In the present study, we investigate the mechanism through which macrophages promote mdx dystrophy and assess whether the phenotype of the macrophages changes between the stage of peak muscle necrosis (4 weeks of age) and muscle regeneration (12 weeks). We find that 4-week-old mdx muscles contain a population of pro-inflammatory, classically activated M1 macrophages that lyse muscle in vitro by NO-mediated mechanisms. Genetic ablation of the iNOS gene in mdx mice also significantly reduces muscle membrane lysis in 4-week-old mdx mice in vivo. However, 4-week mdx muscles also contain a population of alternatively activated, M2a macrophages that express arginase. In vitro assays show that M2a macrophages reduce lysis of muscle cells by M1 macrophages through the competition of arginase in M2a cells with iNOS in M1 cells for their common, enzymatic substrate, arginine. During the transition from the acute peak of mdx pathology to the regenerative stage, expression of IL-4 and IL-10 increases, either of which can deactivate the M1 phenotype and promote activation of a CD163+, M2c phenotype that can increase tissue repair. Our findings further show that IL-10 stimulation of macrophages activates their ability to promote satellite cell proliferation. Deactivation of the M1 phenotype is also associated with a reduced expression of iNOS, IL-6, MCP-1 and IP-10. Thus, these results show that distinct subpopulations of macrophages can promote muscle injury or repair in muscular dystrophy, and that therapeutic interventions that affect the balance between M1 and M2 macrophage populations may influence the course of muscular dystrophy.


Journal of Immunology | 2012

IL-10 Triggers Changes in Macrophage Phenotype That Promote Muscle Growth and Regeneration

Bo Deng; Michelle Wehling-Henricks; S. Armando Villalta; Ying Wang; James G. Tidball

We examined the function of IL-10 in regulating changes in macrophage phenotype during muscle growth and regeneration following injury. Our findings showed that the Th1 cytokine response in inflamed muscle is characterized by high levels of expression of CD68, CCL-2, TNF-α, and IL-6 at 1 d postinjury. During transition to the Th2 cytokine response, expression of those transcripts declined, whereas CD163, IL-10, IL-10R1, and arginase-1 increased. Ablation of IL-10 amplified the Th1 response at 1 d postinjury, causing increases in IL-6 and CCL2, while preventing a subsequent increase in CD163 and arginase-1. Reductions in muscle fiber damage that normally occurred between 1 and 4 d postinjury did not occur in IL-10 mutants. In addition, muscle regeneration and growth were greatly slowed by loss of IL-10. Furthermore, myogenin expression increased in IL-10 mutant muscle at 1 d postinjury, suggesting that the mutation amplified the transition from the proliferative to the early differentiation stages of myogenesis. In vitro assays showed that stimulation of muscle cells with IL-10 had no effect on cell proliferation or expression of MyoD or myogenin. However, coculturing muscle cells with macrophages activated with IL-10 to the M2 phenotype increased myoblast proliferation without affecting MyoD or myogenin expression, showing that M2 macrophages promote the early, proliferative stage of myogenesis. Collectively, these data show that IL-10 plays a central role in regulating the switch of muscle macrophages from a M1 to M2 phenotype in injured muscle in vivo, and this transition is necessary for normal growth and regeneration of muscle.


Human Molecular Genetics | 2011

Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype

S. Armando Villalta; Chiara Rinaldi; Bo Deng; Grace Liu; Brian Fedor; James G. Tidball

M1 macrophages play a major role in worsening muscle injury in the mdx mouse model of Duchenne muscular dystrophy. However, mdx muscle also contains M2c macrophages that can promote tissue repair, indicating that factors regulating the balance between M1 and M2c phenotypes could influence the severity of the disease. Because interleukin-10 (IL-10) modulates macrophage activation in vitro and its expression is elevated in mdx muscles, we tested whether IL-10 influenced the macrophage phenotype in mdx muscle and whether changes in IL-10 expression affected the pathology of muscular dystrophy. Ablation of IL-10 expression in mdx mice increased muscle damage in vivo and reduced mouse strength. Treating mdx muscle macrophages with IL-10 reduced activation of the M1 phenotype, assessed by iNOS expression, and macrophages from IL-10 null mutant mice were more cytolytic than macrophages isolated from wild-type mice. Our data also showed that muscle cells in mdx muscle expressed the IL-10 receptor, suggesting that IL-10 could have direct effects on muscle cells. We assayed whether ablation of IL-10 in mdx mice affected satellite cell numbers, using Pax7 expression as an index, but found no effect. However, IL-10 mutation significantly increased myogenin expression in vivo during the acute and the regenerative phase of mdx pathology. Together, the results show that IL-10 plays a significant regulatory role in muscular dystrophy that may be caused by reducing M1 macrophage activation and cytotoxicity, increasing M2c macrophage activation and modulating muscle differentiation.


Journal of Clinical Investigation | 2004

Mast cell dipeptidyl peptidase I mediates survival from sepsis

Jon Mallen-St. Clair; Christine T. N. Pham; S. Armando Villalta; George H. Caughey; Paul J. Wolters

Sepsis is a common, life-threatening disease for which there is little treatment. The cysteine protease dipeptidyl peptidase I (DPPI) activates granule-associated serine proteases, several of which play important roles in host responses to bacterial infection. To examine DPPIs role in sepsis, we compared DPPI(-/-) and DPPI(+/+) mice using the cecal ligation and puncture (CLP) model of septic peritonitis, finding that DPPI(-/-) mice are far more likely to survive sepsis. Outcomes of CLP in mice lacking mast cell DPPI reveal that the absence of DPPI in mast cells, rather than in other cell types, is responsible for the survival advantage. Among several cytokines surveyed in peritoneal fluid and serum, IL-6 is highly and differentially expressed in DPPI(-/-) mice compared with DPPI(+/+) mice. Remarkably, deleting IL-6 expression in DPPI(-/-) mice eliminates the survival advantage. The increase in IL-6 in septic DPPI(-/-) mice, which appears to protect these mice from death, may be related to reduced DPPI-mediated activation of mast cell tryptase and other peptidases, which we show cleave IL-6 in vitro. These results indicate that mast cell DPPI harms the septic host and that DPPI is a novel potential therapeutic target for treatment of sepsis.


Journal of Immunology | 2008

Mast cell IL-6 improves survival from Klebsiella pneumonia and sepsis by enhancing neutrophil killing.

Rachel E. Sutherland; Joanna S. Olsen; Andrew McKinstry; S. Armando Villalta; Paul J. Wolters

The pleiotropic cytokine IL-6 has favorable and harmful effects on survival from bacterial infections. Although many innate immune cells produce IL-6, little is known about relevant sources in vivo and the nature of its contributions to host responses to severe bacterial infections. To examine these roles, we subjected mast cell-specific IL-6-deficient mice to the cecal ligation and puncture model of septic peritonitis, finding that survival in these mice is markedly worse than in controls. Following intranasal or i.p. inoculation with Klebsiella pneumoniae, IL-6 −/− mice are less likely to survive than wild-type controls and at the time of death have higher numbers of bacteria but not inflammatory cells in lungs and peritoneum. Similarly, mast cell-specific IL-6-deficient mice have diminished survival and higher numbers of K. pneumoniae following i.p. infection. Neutrophils lacking IL-6 have greater numbers of live intracellular K. pneumonia, suggesting impaired intracellular killing contributes to reduced clearance in IL-6−/− mice. These results establish that mast cell IL-6 is a critical mediator of survival following K. pneumoniae infection and sepsis and suggest that IL-6 protects from death by augmenting neutrophil killing of bacteria.


Journal of Immunology | 2011

IFN-γ Promotes Muscle Damage in the mdx Mouse Model of Duchenne Muscular Dystrophy by Suppressing M2 Macrophage Activation and Inhibiting Muscle Cell Proliferation

S. Armando Villalta; Bo Deng; Chiara Rinaldi; Michelle Wehling-Henricks; James G. Tidball

Duchenne muscular dystrophy is a degenerative disorder that leads to death by the third decade of life. Previous investigations have shown that macrophages that invade dystrophic muscle are a heterogeneous population consisting of M1 and M2 macrophages that promote injury and repair, respectively. In the present investigation, we tested whether IFN-γ worsens the severity of mdx dystrophy by activating macrophages to a cytolytic M1 phenotype and by suppressing the activation of proregenerative macrophages to an M2 phenotype. IFN-γ is a strong inducer of the M1 phenotype and is elevated in mdx dystrophy. Contrary to our expectations, null mutation of IFN-γ caused no reduction of cytotoxicity of macrophages isolated from mdx muscle and did not reduce muscle fiber damage in vivo or improve gross motor function of mdx mice at the early, acute peak of pathology. In contrast, ablation of IFN-γ reduced muscle damage in vivo during the regenerative stage of the disease and increased activation of the M2 phenotype and improved motor function of mdx mice at that later stage of the disease. IFN-γ also inhibited muscle cell proliferation and differentiation in vitro, and IFN-γ mutation increased MyoD expression in mdx muscle in vivo, showing that IFN-γ can have direct effects on muscle cells that could impair repair. Taken together, the findings show that suppression of IFN-γ signaling in muscular dystrophy reduces muscle damage and improves motor performance by promoting the M2 macrophage phenotype and by direct actions on muscle cells.


Science Translational Medicine | 2014

Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy

S. Armando Villalta; Wendy Rosenthal; Leonel Martinez; Amanjot Kaur; Tim Sparwasser; James G. Tidball; Marta Margeta; Melissa J. Spencer; Jeffrey A. Bluestone

Regulatory T cells ameliorate symptoms of muscular dystrophy by suppressing type 1 inflammatory responses in muscle. Tregs Muscle In on the Action Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene leading to muscle degeneration. Villalta et al. now show that the imbalance between proinflammatory and proregulatory immune cells in both humans with DMD and in the mdx mouse model of the disease is directly involved in myofiber damage. Increasing the number of anti-inflammatory regulatory T cells (Tregs) in dystrophic muscle prevents tissue destruction and ameliorates clinical manifestations. Treg elimination resulted in increased production of proinflammatory cytokines and macrophages, whereas treatment with the Treg-promoting cytokine interleukin-2 (IL-2) increased immunosuppressive IL-10 production and resolved myofiber damage. Thus, this study shows that Tregs modulate the progression of muscular dystrophy by suppressing type 1 inflammation and highlight the potential of Treg-modulating agents as DMD therapeutics. We examined the hypothesis that regulatory T cells (Tregs) modulate muscle injury and inflammation in the mdx mouse model of Duchenne muscular dystrophy (DMD). Although Tregs were largely absent in the muscle of wild-type mice and normal human muscle, they were present in necrotic lesions, displayed an activated phenotype, and showed increased expression of interleukin-10 (IL-10) in dystrophic muscle from mdx mice. Depletion of Tregs exacerbated muscle injury and the severity of muscle inflammation, which was characterized by an enhanced interferon-γ (IFN-γ) response and activation of M1 macrophages. To test the therapeutic value of targeting Tregs in muscular dystrophy, we treated mdx mice with IL-2/anti–IL-2 complexes and found that Tregs and IL-10 concentrations were increased in muscle, resulting in reduced expression of cyclooxygenase-2 and decreased myofiber injury. These findings suggest that Tregs modulate the progression of muscular dystrophy by suppressing type 1 inflammation in muscle associated with muscle fiber injury, and highlight the potential of Treg-modulating agents as therapeutics for DMD.


Human Molecular Genetics | 2008

Major basic protein-1 promotes fibrosis of dystrophic muscle and attenuates the cellular immune response in muscular dystrophy

Michelle Wehling-Henricks; Sophie Sokolow; Jamie J. Lee; Kyu H. Myung; S. Armando Villalta; James G. Tidball

The immune response to dystrophin-deficient muscle promotes the pathology of Duchenne muscular dystrophy (DMD) and the mdx mouse model of DMD. In this investigation, we find that the release of major basic protein (MBP) by eosinophils is a prominent feature of DMD and mdx dystrophy and that eosinophils lyse muscle cells in vitro by the release of MBP-1. We also show that eosinophil depletions of mdx mice by injections of anti-chemokine receptor-3 reduce muscle cell lysis, although lysis of mdx muscle membranes is not reduced by null mutation of MBP-1 in vivo. However, ablation of MBP-1 expression in mdx mice produces other effects on muscular dystrophy. First, fibrosis of muscle and hearts, a major cause of mortality in DMD, is greatly reduced by null mutation of MBP-1 in mdx mice. Furthermore, either ablation of MBP-1 or eosinophil depletion causes large increases in cytotoxic T-lymphocytes (CTLs) in mdx muscles. The increase in CTLs in MBP-1-null mice does not reflect a general shift toward a Th1 inflammatory response, because the mutation had no significant effect on the expression of interferon-gamma, inducible nitric oxide synthase or tumor necrosis factor. Rather, MBP-1 reduces the activation and proliferation of splenocytes in vitro, indicating that MBP-1 acts in a more specific immunomodulatory role to affect the inflammatory response in muscular dystrophy. Together, these findings show that eosinophil-derived MBP-1 plays a significant role in regulating muscular dystrophy by attenuating the cellular immune response and promoting tissue fibrosis that can eventually contribute to increased mortality.

Collaboration


Dive into the S. Armando Villalta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Deng

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiara Rinaldi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert S. Baldwin

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Amanjot Kaur

University of California

View shared research outputs
Top Co-Authors

Avatar

Amer A. Beg

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge