S. Ast
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Ast.
Optics Express | 2011
M. Mehmet; S. Ast; T. Eberle; S. Steinlechner; H. Vahlbruch; Roman Schnabel
Continuous-wave squeezed states of light at the wavelength of 1550 nm have recently been demonstrated, but so far the obtained factors of noise suppression still lag behind todays best squeezing values demonstrated at 1064 nm. Here we report on the realization of a half-monolithic nonlinear resonator based on periodically-poled potassium titanyl phosphate which enabled the direct detection of up to 12.3 dB of squeezing at 5 MHz. Squeezing was observed down to a frequency of 2 kHz which is well within the detection band of gravitational wave interferometers. Our results suggest that a long-term stable 1550 nm squeezed light source can be realized with strong squeezing covering the entire detection band of a 3rd generation gravitational-wave detector such as the Einstein Telescope.
Optics Letters | 2011
S. Ast; Ramon Moghadas Nia; A. Schönbeck; N. Lastzka; J. Steinlechner; T. Eberle; M. Mehmet; S. Steinlechner; Roman Schnabel
We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of 95±1%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the nonperfect mode matching into the nonlinear cavity and by the nonperfect impedance matching for the maximum input power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.
Optics Express | 2013
S. Ast; M. Mehmet; Roman Schnabel
We report the generation of squeezed vacuum states of light at 1550 nm with a broadband quantum noise reduction of up to 4.8 dB ranging from 5 MHz to 1.2 GHz sideband frequency. We used a custom-designed 2.6 mm long biconvex periodically-poled potassium titanyl phosphate (PPKTP) crystal. It featured reflectively coated end surfaces, 2.26 GHz of linewidth and generated the squeezing via optical parametric amplification. Two homodyne detectors with different quantum efficiencies and bandwidths were used to characterize the non-classical noise suppression. We measured squeezing values of up to 4.8 dB from 5 to 100 MHz and up to 3 dB from 100 MHz to 1.2 GHz. The squeezed vacuum measurements were limited by detection loss. We propose an improved detection scheme to measure up to 10 dB squeezing over 1 GHz. Our results of GHz bandwidth squeezed light generation provide new prospects for high-speed quantum key distribution.
Optics Letters | 2012
S. Ast; Aiko Samblowski; M. Mehmet; S. Steinlechner; T. Eberle; Roman Schnabel
Squeezed states can be employed for entanglement-based continuous-variable quantum key distribution, where the secure key rate is proportional to the bandwidth of the squeezing. We produced a nonclassical cw laser field at the telecommunication wavelength of 1550 nm, which showed squeezing over a bandwidth of more than 2 GHz. The experimental setup used parametric downconversion via a periodically poled potassium titanyl phosphate crystal. We did not use any resonant enhancement for the fundamental wavelength, which should in principle allow a production of squeezed light over the full phase-matching bandwidth of several nanometers. We measured the squeezing to be up to 0.3 dB below the vacuum noise from 50 MHz to 2 GHz limited by the measuring bandwidth of the homodyne detector. The squeezing strength was possibly limited by thermal lensing inside the nonlinear crystal.
Sensors | 2013
J. Steinlechner; S. Ast; Christoph Krüger; Amrit Pal Singh; T. Eberle; Vitus Händchen; Roman Schnabel
The efficient generation of second-harmonic light and squeezed light requires non-linear crystals that have low absorption at the fundamental and harmonic wavelengths. In this work the photo-thermal self-phase modulation technique is exploited to measure the absorption coefficient of periodically poled potassium titanyl phosphate (PPKTP) at 1,550 nm and 775 nm. The measurement results are (84±40) ppm/cm and (127±24) ppm/cm, respectively. We conclude that the performance of state-of-the-art frequency doubling and squeezed light generation in PPKTP is not limited by absorption.
Physical Review Letters | 2017
M. Korobko; L. Kleybolte; S. Ast; Haixing Miao; Yanbei Chen; Roman Schnabel
The shot-noise limited peak sensitivity of cavity-enhanced interferometric measurement devices, such as gravitational-wave detectors, can be improved by increasing the cavity finesse, even when comparing fixed intracavity light powers. For a fixed light power inside the detector, this comes at the price of a proportional reduction in the detection bandwidth. High sensitivity over a large span of signal frequencies, however, is essential for astronomical observations. It is possible to overcome this standard sensitivity-bandwidth limit using nonclassical correlations in the light field. Here, we investigate the internal squeezing approach, where the parametric amplification process creates a nonclassical correlation directly inside the interferometer cavity. We theoretically analyze the limits of the approach and measure 36% increase in the sensitivity-bandwidth product compared to the classical case. To our knowledge, this is the first experimental demonstration of an improvement in the sensitivity-bandwidth product using internal squeezing, opening the way for a new class of optomechanical force sensing devices.
Classical and Quantum Gravity | 2018
Katharina-Sophie Isleif; Lea Bischof; S. Ast; Daniel Penkert; Thomas S. Schwarze; Germán Fernández Barranco; Max Zwetz; Sonja Veith; Jan-Simon Hennig; Michael Tröbs; J. Reiche; Oliver Gerberding; Karsten Danzmann; Gerhard Heinzel
LISA is a proposed space-based laser interferometer detecting gravitational waves by measuring distances between free-floating test masses housed in three satellites in a triangular constellation with laser links in-between. Each satellite contains two optical benches that are articulated by moving optical subassemblies for compensating the breathing angle in the constellation. The phase reference distribution system, also known as backlink, forms an optical bi-directional path between the intra-satellite benches. In this work we discuss phase reference implementations with a target non-reciprocity of at most
Quantum Information and Measurement | 2017
M. Korobko; L. Kleybolte; S. Ast; Haixing Miao; Yanbei Chen; Roman Schnabel
2\pi\,\mathrm{\mu rad/\sqrt{Hz}}
Archive | 2012
J. Aasi; J. Abadie; B. Abbott; R. Abbott; T. D. Abbott; M. Abernathy; T. Accadia; F. Acernese; C. Adams; T. Adams; P. Addesso; R. Adhikari; C. Affeldt; M. Agathos; K. Agatsuma; P. Ajith; B. Allen; A. Allocca; E. Amador Ceron; D. Amariutei; S. Anderson; W. G. Anderson; Koji Arai; M. C. Araya; S. Ast; S. Aston; P. Astone; D. Atkinson; P. Aufmuth; C. Aulbert
, equivalent to
arXiv: Quantum Physics | 2016
S. Ast; M. Ast; M. Mehmet; Roman Schnabel
1\,\mathrm{pm/\sqrt{Hz}}