Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Baouche is active.

Publication


Featured researches published by S. Baouche.


Journal of Chemical Physics | 2006

Interaction of D2 with H2O amorphous ice studied by temperature- programed desorption experiments

L. Amiaud; Jean-Hugues Fillion; S. Baouche; F. Dulieu; A. Momeni; J. L. Lemaire

The gas-surface interaction of molecular hydrogen D2 with a thin film of porous amorphous solid water (ASW) grown at 10 K by slow vapor deposition has been studied by temperature-programmed-desorption (TPD) experiments. Molecular hydrogen diffuses rapidly into the porous network of the ice. The D2 desorption occurring between 10 and 30 K is considered here as a good probe of the effective surface of ASW interacting with the gas. The desorption kinetics have been systematically measured at various coverages. A careful analysis based on the Arrhenius plot method has provided the D2 binding energies as a function of the coverage. Asymmetric and broad distributions of binding energies were found, with a maximum population peaking at low energy. We propose a model for the desorption kinetics that assumes a complete thermal equilibrium of the molecules with the ice film. The sample is characterized by a distribution of adsorption sites that are filled according to a Fermi-Dirac statistic law. The TPD curves can be simulated and fitted to provide the parameters describing the distribution of the molecules as a function of their binding energy. This approach contributes to a correct description of the interaction of molecular hydrogen with the surface of possibly porous grain mantles in the interstellar medium.


Scientific Reports | 2013

How micron-sized dust particles determine the chemistry of our Universe

F. Dulieu; E. Congiu; Jennifer Noble; S. Baouche; H. Chaabouni; Audrey Moudens; Marco Minissale; Stéphanie Cazaux

In the environments where stars and planets form, about one percent of the mass is in the form of micro-meter sized particles known as dust. However small and insignificant these dust grains may seem, they are responsible for the production of the simplest (H2) to the most complex (amino-acids) molecules observed in our Universe. Dust particles are recognized as powerful nano-factories that produce chemical species. However, the mechanism that converts species on dust to gas species remains elusive. Here we report experimental evidence that species forming on interstellar dust analogs can be directly released into the gas. This process, entitled chemical desorption (fig. 1), can dominate over the chemistry due to the gas phase by more than ten orders of magnitude. It also determines which species remain on the surface and are available to participate in the subsequent complex chemistry that forms the molecules necessary for the emergence of life.


The Astrophysical Journal | 2012

NO ICE HYDROGENATION: A SOLID PATHWAY TO NH2OH FORMATION IN SPACE

E. Congiu; G. Fedoseev; S. Ioppolo; F. Dulieu; H. Chaabouni; S. Baouche; Jean Lemaire; C. Laffon; Philippe Parent; Thanja Lamberts; H. M. Cuppen; Harold Linnartz

Icy dust grains in space act as catalytic surfaces onto which complex molecules form. These molecules are synthesized through exothermic reactions from precursor radicals and, mostly, hydrogen atom additions. Among the resulting products are species of biological relevance, such as hydroxylamine—NH2OH—a precursor molecule in the formation of amino acids. In this Letter, laboratory experiments are described that demonstrate NH2OH formation in interstellar ice analogs for astronomically relevant temperatures via successive hydrogenation reactions of solid nitric oxide (NO). Inclusion of the experimental results in an astrochemical gas–grain model proves the importance of a solid-state NO + H reaction channel as a starting point for prebiotic species in dark interstellar clouds and adds a new perspective to the way molecules of biological importance may form in space.


The Astrophysical Journal | 2010

COMPETING MECHANISMS OF MOLECULAR HYDROGEN FORMATION IN CONDITIONS RELEVANT TO THE INTERSTELLAR MEDIUM

Joël Lemaire; Gianfranco Vidali; S. Baouche; M. Chehrouri; H. Chaabouni; H. Mokrane

The most efficient mechanism of the formation of molecular hydrogen in the current universe is by association of hydrogen atoms on the surface of interstellar dust grains. The details of the processes of its formation and release from the grain are of great importance in the physical and chemical evolution of the space environments where it takes place. The main puzzle is still the fate of the 4.5 eV released in H2 formation and whether it goes into internal energy (rovibrational excitation), translational kinetic energy, or heating of the grain. The modality of the release of this energy affects the dynamics of the ISM and its evolution toward star formation. We present results of the detection of the rovibrational states of the just-formed H2 as it leaves the surface of a silicate. We find that rovibrationally excited molecules are ejected into the gas phase immediately after formation over a much wider range of grain temperatures than anticipated. Our results can be explained by the presence of two mechanisms of molecule formation that operate in partially overlapping ranges of grain temperature. A preliminary analysis of the relative importance of these two mechanisms is given. These unexpected findings, which will be complemented with experiments on the influence of factors such as silicate morphology, should be of great interest to the astrophysics and astrochemistry communities.


Journal of Chemical Physics | 2012

Efficient surface formation route of interstellar hydroxylamine through NO hydrogenation. I. The submonolayer regime on interstellar relevant substrates

E. Congiu; H. Chaabouni; C. Laffon; P. Parent; S. Baouche; F. Dulieu

Dust grains in the interstellar medium are known to serve as the first chemical laboratory where the rich inventory of interstellar molecules are synthesized. Here we present a study of the formation of hydroxylamine--NH(2)OH--via the non-energetic route NO + H (D) on crystalline H(2)O and amorphous silicate under conditions relevant to interstellar dense clouds. Formation of nitrous oxide (N(2)O) and water (H(2)O, D(2)O) is also observed and the reaction network is discussed. Hydroxylamine and water results are detected in temperature-programmed desorption (TPD) experiments, while N(2)O is detected by both reflection-absorption IR spectroscopy and TPD techniques. The solid state NO + H reaction channel proves to be a very efficient pathway to NH(2)OH formation in space and may be a potential starting point for prebiotic species in dark interstellar clouds. The present findings are an important step forward in understanding the inclusion of interstellar nitrogen into a non-volatile aminated species since NH(2)OH provides a solid state nitrogen reservoir along the whole evolutionary process of interstellar ices from dark clouds to planetary systems.


Astronomy and Astrophysics | 2011

Differential adsorption of complex organic molecules isomers at interstellar ice surfaces

M. Lattelais; Mathieu Bertin; H. Mokrane; Claire Romanzin; Xavier Michaut; Pascal Jeseck; Jean-Hugues Fillion; H. Chaabouni; E. Congiu; F. Dulieu; S. Baouche; Joël Lemaire; F. Pauzat; J. Pilmé; C. Minot; Y. Ellinger

Context. Over 20 of the ~150 different species detected in the interstellar and circumstellar media have also been identified in icy environments. For most of the species observed so far in the interstellar medium (ISM), the most abundant isomer of a given generic chemical formula is the most stable one (minimum energy principle – MEP) with few exceptions such as, for example, CH3COOH/HCOOCH3 and CH3CH2OH/CH3OCH3, whose formation is thought to occur on the icy mantles of interstellar grains. Aims. We investigate whether differences found in the compositions of molecular ices and the surrounding gas phase could originate from differences between the adsorption of one isomer from that of another at the ice surface. Methods. We performed a coherent and concerted theoretical/experimental study of the adsorption energies of the four molecules mentioned above, i.e. acetic acid (AA)/methyl formate (MF) and ethanol (EtOH)/dimethyl ether (DME) on the surface of water ice at low temperature. The question was first addressed theoretically at LCT using solid state periodic density functional theory (DFT) to represent the organized solid support. The experimental determination of the ice/molecule interaction energies was then carried out independently by two teams at LPMAA and LERMA/LAMAp using temperature programmed desorption (TPD) under an ultra-high vacuum (UHV) between 70 and 160 K. Results. For each pair of isomers, theory and experiments both agree that the most stable isomer (AA or EtOH) interacts more efficiently with the water ice than the higher energy isomer (MF or DME). This differential adsorption can be clearly seen in the different desorption temperatures of the isomers. It is not related to their intrinsic stability but instead to both AA and EtOH producing more and stronger hydrogen bonds with the ice surface. Conclusions. We show that hydrogen bonding may play an important role in the release of organic species from grains and propose that, depending on the environment, differential adsorption should not be rejected as a possible way of interpreting MEP exceptions.


Physical Review Letters | 2013

Quantum Tunneling of Oxygen Atoms on Very Cold Surfaces

Marco Minissale; E. Congiu; S. Baouche; H. Chaabouni; Audrey Moudens; F. Dulieu; M. Accolla; Stéphanie Cazaux; Giulio Manico; V. Pirronello

Any evolving system can change state via thermal mechanisms (hopping a barrier) or via quantum tunneling. Most of the time, efficient classical mechanisms dominate at high temperatures. This is why an increase of the temperature can initiate the chemistry. We present here an experimental investigation of O-atom diffusion and reactivity on water ice. We explore the 6-25 K temperature range at submonolayer surface coverages. We derive the diffusion temperature law and observe the transition from quantum to classical diffusion. Despite the high mass of O, quantum tunneling is efficient even at 6 K. As a consequence, the solid-state astrochemistry of cold regions should be reconsidered and should include the possibility of forming larger organic molecules than previously expected.


Journal of Chemical Physics | 2012

Water formation through O2 + D pathway on cold silicate and amorphous water ice surfaces of interstellar interest

H. Chaabouni; Marco Minissale; G. Manicò; E. Congiu; J. A. Noble; S. Baouche; M. Accolla; J. L. Lemaire; V. Pirronello; F. Dulieu

The formation of the first monolayer of water molecules on bare dust grains is of primary importance to understand the growth of the icy mantles that cover dust in the interstellar medium. In this work, we explore experimentally the formation of water molecules from O(2) + D reaction on bare silicate surfaces that simulates the grains present in the diffuse interstellar clouds at visual extinctions (A(V) < 3 mag). For comparison, we also study the formation of water molecules on surfaces covered with amorphous water ice representing the dense clouds (A(V) ≥ 3 mag). Our studies focus on the formation of water molecules in the sub-monolayer and monolayer regimes using reflection absorption infrared spectroscopy and temperature-programmed desorption techniques. We provide the fractions of the products, such as D(2)O and D(2)O(2) molecules formed on three astrophysically relevant surfaces held at 10 K (amorphous olivine-type silicate, porous amorphous water ice, and nonporous amorphous water ice). Our results showed that the formation of D(2)O molecules occurs with an efficiency of about 55%-60% on nonporous amorphous water ice and about 18% on bare silicate grains surfaces. We explain the low efficiency of D(2)O water formation on the silicate surfaces by the desorption upon formation of certain products once the reaction occurs between O(2) and D atoms on the surface. A kinetic model taking into account the chemical desorption of newly formed water supports our conclusions.


Astronomy and Astrophysics | 2012

Sticking coefficient of hydrogen and deuterium on silicates under interstellar conditions

H. Chaabouni; H. Bergeron; S. Baouche; F. Dulieu; E. Matar; E. Congiu; L. Gavilan; J. L. Lemaire

Context. Sticking of H and D atoms on interstellar dust grains is the first step in molecular hydrogen formation, which is a key reaction in the interstellar medium. Isotopic properties of the sticking can have an incidence on the observed HD molecule. Aims. After studying the sticking coefficients of H2 and D2 molecules on amorphous silicate surfaces experimentally and theoretically, we extrapolate the results to the sticking coefficient of atoms and propose a formulae that gives the sticking coefficients of H and D on both silicates and icy dust grains. Methods. In our experiments, we used the King and Wells method for measuring the sticking coefficients of H2 and D2 molecules on a silicate surface held at 10 K. It consists of measuring with a QMS (quadrupole mass spectrometer) the signals of H2 and D2 molecules reflected by the surface during the exposure of the sample to the molecular beam at a temperature ranging from 20 K to 340 K. We tested the efficiency of a physical model, developed previously for sticking on water-ice surfaces. We applied this model to our experimental results for the sticking coefficients of H2 and D2 molecules on a silicate surface and estimated the sticking coefficient of atoms by a single measurement of atomic recombination and propose an extrapolation. Results. Sticking of H, D, HD, H2 ,a nd D 2 on silicates grains behaves the same as on icy dust grains. The sticking decreases with the gas temperature, and is dependent on the mass of the impactor. The sticking coefficient for both surfaces and impactors can be modeled by an analytical formulae S (T ) = S 0(1 + βT/T0)/(1 + T/T0) β , which describes both the experiments and the thermal distribution expected in an astrophysical context. The parameters S 0 and T0 are summarized in a table. Conclusions. Previous estimates for the sticking coefficient of H atoms are close to the new estimation; however, we find that, when isotopic effects are taken into account, the sticking coefficient variations can be as much as a factor of 2 at T = 100 K.


Faraday Discussions | 2014

Efficient diffusive mechanisms of O atoms at very low temperatures on surfaces of astrophysical interest

E. Congiu; Marco Minissale; S. Baouche; H. Chaabouni; Audrey Moudens; Stéphanie Cazaux; Giulio Manico; V. Pirronello; F. Dulieu

At the low temperatures of interstellar dust grains, it is well established that surface chemistry proceeds via diffusive mechanisms of H atoms weakly bound (physisorbed) to the surface. Until recently, however, it was unknown whether atoms heavier than hydrogen could diffuse rapidly enough on interstellar grains to react with other accreted species. In addition, models still require simple reduction as well as oxidation reactions to occur on grains to explain the abundances of various molecules. In this paper we investigate O-atom diffusion and reactivity on a variety of astrophysically relevant surfaces (water ice of three different morphologies, silicate, and graphite) in the 6.5-25 K temperature range. Experimental values were used to derive a diffusion law that emphasizes that O atoms diffuse by quantum mechanical tunnelling at temperatures as low as 6.5 K. The rates of diffusion on each surface, based on modelling results, were calculated and an empirical law is given as a function of the surface temperature. The relative diffusion rates are k(H2Oice) > k(sil) > k(graph) >> k(expected). The implications of efficient O-atom diffusion over astrophysically relevant time-scales are discussed. Our findings show that O atoms can scan any available reaction partners (e.g., either another H atom, if available, or a surface radical like O or OH) at a faster rate than that of accretion. Also, as dense clouds mature, H2 becomes far more abundant than H and the O : H ratio grows, and the reactivity of O atoms on grains is such that O becomes one of the dominant reactive partners together with H.

Collaboration


Dive into the S. Baouche's collaboration.

Top Co-Authors

Avatar

F. Dulieu

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

H. Chaabouni

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

E. Congiu

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Hugues Fillion

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

J. L. Lemaire

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean Lemaire

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Marco Minissale

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

H. Mokrane

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

L. Amiaud

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Audrey Moudens

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge