S. Bellomo
University of Palermo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Bellomo.
Geochimica et Cosmochimica Acta | 2002
C. Federico; A. Aiuppa; P. Allard; S. Bellomo; Philippe Jean-Baptiste; Francesco Parello; Mariano Valenza
-European Union, -Ministero dell’Universita’ e della Ricerca Scientifica e Tecnologica; -CNR–Gruppo Nazionale per la Vulcanologia.
Applied Geochemistry | 2003
Alessandro Aiuppa; S. Bellomo; L. Brusca; W. D'Alessandro; C. Federico
Abstract New geochemical data on dissolved major and minor constituents in 276 groundwater samples from Etna aquifers reveal the main processes responsible for their geochemical evolution and mineralisation. This topic is of particular interest in the light of the progressive depletion of water resources and groundwater quality in the area. Multivariate statistical analysis reveal 3 sources of solutes: (a) the leaching of the host basalt, driven by the dissolution of magma-derived CO2; (b) mixing processes with saline brines rising from the sedimentary basement below Etna; (c) contamination from agricultural and urban wastewaters. The last process, highlighted by increased concentrations of SO4, NO3, Ca, F and PO4, is more pronounced on the lower slopes of the volcanic edifice, associated with areas of high population and intensive agriculture. However, this study demonstrates that natural processes (a) and (b) are also very effective in producing highly mineralised waters, which in turn results in many constituents (B, V, Mg) exceeding maximum admissible concentrations for drinking water.
Arabian Journal of Geosciences | 2016
Sergio Calabrese; L. Randazzo; Kyriaki Daskalopoulou; Silvia Milazzo; S Scaglione; S. Vizzini; C. D. Tramati; W D’Alessandro; L. Brusca; S. Bellomo; Giovanni Bruno Giuffrida; G. Pecoraino; G. Montana; G. Salerno; S. Giammanco; T. Caltabiano; Francesco Parello
Volcanic emissions represent one of the most relevant natural sources of trace elements to the troposphere. Due to their potential toxicity, they may have important environmental impacts from local to global scale. They can also severely affect the atmospheric and terrestrial environment at timescales ranging from a few to millions of years. Mt. Etna volcano is known as one of the largest global contributors of magmatic gases (CO2, SO2 and halogens) and particulate matter, including some toxic trace elements. The aim of this study is to characterize the chemical composition and the mineralogical features of the volcanogenic aerosol passively emitted from Mt. Etna. Twenty-five samples were collected by filtration technique from different sites between 2008 and 2014. Chemical and mineralogical analyses allowed to discriminate two main constituents: the first is mainly referable to the silicate component in the volcanic plume, like lithic, juvenile fragments or glass shards and crystals (e.g. plagioclases, pyroxenes, oxides); the second constituent consists of soluble compounds like sulphosalts or halide minerals (sulphates, chlorides and fluorides). Fluxes of major and trace metals emitted in the atmosphere have been estimated. By comparing the Etnean trace elements with those from European anthropic emissions, we conclude that Mt. Etna is the main persistent point source of major and trace metals in the Mediterranean region. Results gathered from this investigation is of fundamental importance due to the exposure and potential impact of harmful chemical compounds for hundred thousand tourist visits each year to the summit of Mt. Etna.
Science of The Total Environment | 2003
S. Bellomo; W D'Alessandro; M Longo
Many studies have assessed the strong influence of volcanic activity on the surrounding environment. This is particularly true for strong gas emitters such as Mt. Etna and Stromboli volcanoes. Among volcanic gases, fluorine compounds are potentially very harmful. Fluorine cycling through rainwater in the above volcanic areas was studied analysing more than 400 monthly bulk samples. Data indicate that only approximately 1% of fluorine emission through the plume is deposited on the two volcanic areas by meteoric precipitations. Although measured bulk rainwater fluorine fluxes are comparable to and sometimes higher than in heavily polluted areas, their influence on the surrounding vegetation is limited. Only annual crops, in fact, show some damage that could be an effect of fluorine deposition, indicating that long-living endemic plant species or varieties have developed some kind of resistance.
Journal of Geophysical Research | 2015
Giancarlo Tamburello; Mariano Agusto; Alberto Caselli; Franco Tassi; Orlando Vaselli; Sergio Calabrese; Dmitri Rouwet; Bruno Capaccioni; R. Di Napoli; Carlo Cardellini; Giovanni Chiodini; M. Bitetto; L. Brusca; S. Bellomo; A. Aiuppa
Here we report on the first assessment of volatile fluxes from the hyperacid crater lake hosted within the summit crater of Copahue, a very active volcano on the Argentina-Chile border. Our observations were performed using a variety of in situ and remote sensing techniques during field campaigns in March 2013, when the crater hosted an active fumarole field, and in March 2014, when an acidic volcanic lake covered the fumarole field. In the latter campaign, we found that 566 to 1373 t d−1 of SO2 were being emitted from the lake in a plume that appeared largely invisible. This, combined with our derived bulk plume composition, was converted into flux of other volcanic species (H2O ~ 10989 t d−1, CO2 ~ 638 t d−1, HCl ~ 66 t d−1, H2 ~ 3.3 t d−1, and HBr ~ 0.05 t d−1). These levels of degassing, comparable to those seen at many open-vent degassing arc volcanoes, were surprisingly high for a volcano hosting a crater lake. Copahues unusual degassing regime was also confirmed by the chemical composition of the plume that, although issuing from a hot (65°C) lake, preserves a close-to-magmatic signature. EQ3/6 models of gas-water-rock interaction in the lake were able to match observed compositions and demonstrated that magmatic gases emitted to the atmosphere were virtually unaffected by scrubbing of soluble (S and Cl) species. Finally, the derived large H2O flux (10,988 t d−1) suggested a mechanism in which magmatic gas stripping drove enhanced lake water evaporation, a process likely common to many degassing volcanic lakes worldwide.
Geophysical Research Letters | 2015
A. Rizzo; Cinzia Federico; Salvatore Inguaggiato; Aldo Sollami; Mariano Tantillo; Fabio Vita; S. Bellomo; Manfredi Longo; Fausto Grassa; Marco Liuzzo
A new eruption started at Stromboli on 6 August 2014, which had been preceded by 2 months of increased Strombolian activity and several lava overflows from the craters. The eruption was characterized by a lava effusion in Sciara del Fuoco from a fracture at 650 m above sea level that lasted until 13–17 November. Here we present the first geochemical observations of this eruption, based on the soil CO2 flux in the summit area and on 3He/4He ratios in the thermal waters near Stromboli village. We infer that this eruption was triggered by the gradual replenishment of the feeding system by a CO2- and 3He-rich magma at the end of 2013 and after June 2014, suggested by the increase in 3He/4He ratio before eruption, which reached its highest value since 2007. We thus infer that this eruption was unusual, and we finally speculate on the evolutionary scenario of posteruption.
Chemosphere | 2015
Sergio Calabrese; W D’Alessandro; S. Bellomo; L. Brusca; R.S. Martin; F. Saiano; Francesco Parello
Active biomonitoring using moss-bags was applied to an active volcanic environment for the first time. Bioaccumulation originating from atmospheric deposition was evaluated by exposing mixtures of washed and air-dried mosses (Sphagnum species) at 24 sites on Mt. Etna volcano (Italy). Concentrations of major and a large suite of trace elements were analysed by inductively coupled mass and optical spectrometry (ICP-MS and ICP-OES) after total acid digestion. Of the 49 elements analysed those which closely reflect summit volcanic emissions were S, Tl, Bi, Se, Cd, As, Cu, B, Na, Fe, Al. Enrichment factors and cluster analysis allowed clear distinction between volcanogenic, geogenic and anthropogenic inputs that affect the local atmospheric deposition. This study demonstrates that active biomonitoring with moss-bags is a suitable and robust technique for implementing inexpensive monitoring in scarcely accessible and harsh volcanic environments, giving time-averaged quantitative results of the local exposure to volcanic emissions. This task is especially important in the study area because the summit area of Mt. Etna is visited by nearly one hundred thousand tourists each year who are exposed to potentially harmful volcanic emissions.
Environmental Monitoring and Assessment | 2011
W D’Alessandro; S. Bellomo; Pietro Bonfanti; L. Brusca; Manfredi Longo
In this paper, in an attempt to reveal possible changes connected to natural or anthropogenic causes, the main results of hydrogeochemical monitoring carried out at Mount Etna are evaluated. We report on the salinity contents of the groundwaters that flow in fractured volcanics, which make up the flanks of the volcano. These waters, analyzed for major ion chemistry, were sampled regularly from 1994 to 2004. Basing on nonparametric Sen’s slope estimator, time series of groundwater composition reveal that the salinity of most of the Etnean aquifers increased by 0.5% to 3.5% each year during this period. This change in the water chemistry is clearly referable to the overexploitation of the aquifers. This increasing trend needs to be inverted urgently; otherwise, it will cause a shortage of water in the near future, because the maximum admissible concentration of salinity for drinking water will be exceeded.
Journal of Chemistry | 2016
Marianna Cangemi; Paolo Madonia; S. Bellomo; Ygor Oliveri
Hydrothermal lakes are a very common feature in volcanic environments, and among these lake Specchio di Venere (Pantelleria island, Italy) has attracted the interest of several researchers due to its peculiar characteristics. With the aim of improving the knowledge of its mineralogy, our work pointed out the characterisation of the bottom lake sediments. We collected and analysed 5 sediments cores around the shoreline, determining the mineralogical phases, concentration of major, minor, and trace elements, and the isotopic composition of carbon and oxygen in the carbonate phases. Our findings remarked a general compositional homogeneity in both the vertical and horizontal distribution of mineral phases, with the exception of peculiar geological niches connoted by biological and hydrothermal activities.
Annals of Geophysics | 2015
Kyriaki Daskalopoulou; Sergio Calabrese; Silvia Milazzo; L. Brusca; S. Bellomo; W. D'Alessandro; Kostantinos Kyriakopoulos; Franco Tassi; Francesco Parello
A.1 Analytical Tecniques All soil samples were air dried, thoroughly mixed and split into subsamples for analysis. Particular care was taken using a Riffle-type sample splitter to ensure that representative subsamples were obtained. All analyses were made after sieving the soil samples through a 2-mm sieve and, except for pH determination, ground with an agate mortar. [...]