S. Boukraa
University of Blida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Boukraa.
Journal of Physics A | 2004
N. Zenine; S. Boukraa; S. Hassani; J. M. Maillard
Using an expansion method in the variables xi that appear in (n ? 1)-dimensional integrals representing the n-particle contribution to the Ising square lattice model susceptibility ?, we generate a long series of coefficients for the three-particle contribution ?(3), using an N4 polynomial time algorithm. We give the Fuchsian differential equation of order 7 for ?(3) that reproduces all the terms of our long series. An analysis of the properties of this Fuchsian differential equation is performed.
Journal of Physics A | 2009
Alin Bostan; S. Boukraa; A J Guttmann; S. Hassani; Iwan Jensen; J. M. Maillard; N. Zenine
We consider the Fuchsian linear differential equation obtained (modulo a prime) for
Journal of Physics A | 2005
N. Zenine; S. Boukraa; S. Hassani; J. M. Maillard
tilde{chi}^{(5)}
Journal of Physics A | 2007
S. Boukraa; S. Hassani; J. M. Maillard; Barry M. McCoy; N. Zenine
, the five-particle contribution to the susceptibility of the square lattice Ising model. We show that one can understand the factorization of the corresponding linear differential operator from calculations using just a single prime. A particular linear combination of
Journal of Physics A | 2005
N. Zenine; S. Boukraa; S. Hassani; J. M. Maillard
tilde{chi}^{(1)}
Journal of Physics A | 2005
N Zenine; S. Boukraa; S. Hassani; J-M. Maillard
and
Physica D: Nonlinear Phenomena | 1999
N. Abarenkova; J.-Ch. Anglès d’Auriac; S. Boukraa; J-M. Maillard
tilde{chi}^{(3)}
Physica A-statistical Mechanics and Its Applications | 1995
S. Boukraa; J-M. Maillard
can be removed from
Journal of Physics A | 2007
S. Boukraa; S. Hassani; J. M. Maillard; N. Zenine
tilde{chi}^{(5)}
Physica A-statistical Mechanics and Its Applications | 1994
S. Boukraa; J-M. Maillard; G. Rollet
and the resulting series is annihilated by a high order globally nilpotent linear ODE. The corresponding (minimal order) linear differential operator, of order 29, splits into factors of small orders. A fifth order linear differential operator occurs as the left-most factor of the depleted differential operator and it is shown to be equivalent to the symmetric fourth power of