S Brons
University Hospital Heidelberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S Brons.
Physics in Medicine and Biology | 2013
A. Mairani; T.T. Böhlen; A. Schiavi; T. Tessonnier; S. Molinelli; S Brons; G. Battistoni; Katia Parodi; V. Patera
In the field of radiotherapy, Monte Carlo (MC) particle transport calculations are recognized for their superior accuracy in predicting dose and fluence distributions in patient geometries compared to analytical algorithms which are generally used for treatment planning due to their shorter execution times. In this work, a newly developed MC-based treatment planning (MCTP) tool for proton therapy is proposed to support treatment planning studies and research applications. It allows for single-field and simultaneous multiple-field optimization in realistic treatment scenarios and is based on the MC code FLUKA. Relative biological effectiveness (RBE)-weighted dose is optimized either with the common approach using a constant RBE of 1.1 or using a variable RBE according to radiobiological input tables. A validated reimplementation of the local effect model was used in this work to generate radiobiological input tables. Examples of treatment plans in water phantoms and in patient-CT geometries together with an experimental dosimetric validation of the plans are presented for clinical treatment parameters as used at the Italian National Center for Oncological Hadron Therapy. To conclude, a versatile MCTP tool for proton therapy was developed and validated for realistic patient treatment scenarios against dosimetric measurements and commercial analytical TP calculations. It is aimed to be used in future for research and to support treatment planning at state-of-the-art ion beam therapy facilities.
Physics in Medicine and Biology | 2010
A. Mairani; S Brons; F. Cerutti; A Fassò; A. Ferrari; Michael Krämer; Katia Parodi; M Scholz; Florian Sommerer
Clinical Monte Carlo (MC) calculations for carbon ion therapy have to provide absorbed and RBE-weighted dose. The latter is defined as the product of the dose and the relative biological effectiveness (RBE). At the GSI Helmholtzzentrum für Schwerionenforschung as well as at the Heidelberg Ion Therapy Center (HIT), the RBE values are calculated according to the local effect model (LEM). In this paper, we describe the approach followed for coupling the FLUKA MC code with the LEM and its application to dose and RBE-weighted dose calculations for a superimposition of two opposed (12)C ion fields as applied in therapeutic irradiations. The obtained results are compared with the available experimental data of CHO (Chinese hamster ovary) cell survival and the outcomes of the GSI analytical treatment planning code TRiP98. Some discrepancies have been observed between the analytical and MC calculations of absorbed physical dose profiles, which can be explained by the differences between the laterally integrated depth-dose distributions in water used as input basic data in TRiP98 and the FLUKA recalculated ones. On the other hand, taking into account the differences in the physical beam modeling, the FLUKA-based biological calculations of the CHO cell survival profiles are found in good agreement with the experimental data as well with the TRiP98 predictions. The developed approach that combines the MC transport/interaction capability with the same biological model as in the treatment planning system (TPS) will be used at HIT to support validation/improvement of both dose and RBE-weighted dose calculations performed by the analytical TPS.
Physics in Medicine and Biology | 2013
Ilaria Rinaldi; S Brons; J Gordon; R. Panse; B Voss; Oliver Jäkel; Katia Parodi
Ion beams exhibit a finite range and an inverted depth-dose profile, the Bragg peak. These favorable physical properties allow excellent tumor-dose conformality. However, they introduce sensitivity to range uncertainties. Although these uncertainties are typically taken into account in treatment planning, delivery of the intended dose to the patient has to be ensured daily to prevent underdosage of the tumor or overdosage of surrounding critical structures. Thus, imaging techniques play an increasingly important role for treatment planning and in situ monitoring in ion beam therapy. At the Heidelberg Ion Beam Therapy (HIT) center, a prototype detector system based on a stack of 61 ionization chambers has been assembled for the purpose of radiographic and tomographic imaging of transmitted energetic ions. Its applicability to ion-based transmission imaging was investigated experimentally. An extensive characterization of the set-up in terms of beam parameters and settings of the read-out electronics was performed. Overall, the findings of this work support the potential of an efficient experimental set-up as the range telescope equipped with high sensitivity and fast electronics to perform heavy ion radiography and tomography at HIT.
Physics in Medicine and Biology | 2010
Katia Parodi; A. Mairani; S Brons; J Naumann; Michael Krämer; Florian Sommerer; T Haberer
Scanned ion beam delivery promises superior flexibility and accuracy for highly conformal tumour therapy in comparison to the usage of passive beam shaping systems. The attainable precision demands correct overlapping of the pencil-like beams which build up the entire dose distribution in the treatment field. In particular, improper dose application due to deviations of the lateral beam profiles from the nominal planning conditions must be prevented via appropriate beam monitoring in the beamline, prior to the entrance in the patient. To assess the necessary tolerance thresholds of the beam monitoring system at the Heidelberg Ion Beam Therapy Center, Germany, this study has investigated several worst-case scenarios for a sensitive treatment plan, namely scanned proton and carbon ion delivery to a small target volume at a shallow depth. Deviations from the nominal lateral beam profiles were simulated, which may occur because of misaligned elements or changes of the beam optic in the beamline. Data have been analysed with respect to the lateral penumbra, homogeneity and coverage of the dose deposition in the target volume. The results indicate that homogeneity is not seriously compromised by extremely narrow profiles for the standard planning choices of the lateral raster scan stepping and dose grid. Differently, broad beam distributions can significantly deteriorate the conformality of the dose delivery and too large increases (above approximately 150-200% of the nominal spotsize) must be prevented.
Physics in Medicine and Biology | 2015
M. Pinto; M. Bajard; S Brons; M. Chevallier; D. Dauvergne; George Dedes; M. De Rydt; N. Freud; J. Krimmer; C. La Tessa; J.M. Létang; Katia Parodi; Radek Pleskac; D. Prieels; C. Ray; I. Rinaldi; F. Roellinghoff; Dieter Schardt; E. Testa; M. Testa
Prompt-gamma emission detection is a promising technique for hadrontherapy monitoring purposes. In this regard, obtaining prompt-gamma yields that can be used to develop monitoring systems based on this principle is of utmost importance since any camera design must cope with the available signal. Herein, a comprehensive study of the data from ten single-slit experiments is presented, five consisting in the irradiation of either PMMA or water targets with lower and higher energy carbon ions, and another five experiments using PMMA targets and proton beams. Analysis techniques such as background subtraction methods, geometrical normalization, and systematic uncertainty estimation were applied to the data in order to obtain absolute prompt-gamma yields in units of prompt-gamma counts per incident ion, unit of field of view, and unit of solid angle. At the entrance of a PMMA target, where the contribution of secondary nuclear reactions is negligible, prompt-gamma counts per incident ion, per millimetre and per steradian equal to (124xa0±xa00.7statxa0±xa030sys)xa0×xa010(-6) for 95xa0MeVxa0u(-1) carbon ions, (79xa0±xa02statxa0±xa023sys)xa0×xa010(-6) for 310xa0MeVxa0u(-1) carbon ions, and (16xa0±xa00.07statxa0±xa01sys)xa0×xa010(-6) for 160xa0MeV protons were found for prompt gammas with energies higher than 1xa0MeV. This shows a factor 5 between the yields of two different ions species with the same range in water (160xa0MeV protons and 310xa0MeVxa0u(-1) carbon ions). The target composition was also found to influence the prompt-gamma yield since, for 300/310xa0MeVxa0u(-1) carbon ions, a 42% greater yield ((112xa0±xa01statxa0±xa022sys)xa0×xa010(-6) counts ion(-1)xa0mm(-1)xa0sr(-1)) was obtained with a water target compared to a PMMA one.
Physics in Medicine and Biology | 2014
I. Rinaldi; S Brons; Oliver Jäkel; B Voss; Katia Parodi
Ion beams offer an excellent tumor-dose conformality due to their inverted depth-dose profile and finite range in tissue, the Bragg peak (BP). However, they introduce sensitivity to range uncertainties. Imaging techniques play an increasingly important role in ion beam therapy to support precise diagnosis and identification of the target volume at the planning stage as well as to ensure the correspondence between the planning and treatment situation at the actual irradiation. For the purpose of improved treatment quality, ion-based radiographic images could be acquired at the treatment site before or during treatment and be employed to monitor the patient positioning and to check the patient-specific ion range. This work presents the initial experimental investigations carried out to address the feasibility of carbon ion radiography at the Heidelberg ion therapy center using a prototype range telescope set-up and an active raster scanning ion beam delivery system. Bragg curves are measured with a stack of ionization chambers (IC) synchronously to the beam delivery. The position of the BP is extracted from the data by locating the channel of maximum current signal for each delivered beam. Each BP is associated to the lateral and vertical positions of the scanned raster point extrapolated from the beam monitor system to build up a radiography. The radiographic images are converted into water equivalent thickness (WET) based on two calibrations of the detector. Radiographies of two phantoms of different complexities are reconstructed and their image quality is analyzed. A novel method proposed to increase the nominal range resolution of the IC stack is applied to the carbon ion radiography of an Alderson head phantom. Moreover, an x-ray digitally reconstructed radiography of the same anthropomorphic head phantom is converted in WET through the clinically used ion range calibration curve and compared with the carbon ion radiography based on a γ-index approach, yielding a good correspondence in terms of absolute WET within ±3%, 3xa0mm distance-to-agreement and, 87% passing ratio. Imaging artifacts at interfaces within the irradiated phantom due to the finite size of the beam, resulting in multiple maxima, are addressed. Overall, this work demonstrates the feasibility of the prototype range telescope to acquire ion-based transmission imaging with a resolution of up to 0.8xa0mm WET.
Physics in Medicine and Biology | 2017
Thomas Tessonnier; A. Mairani; S Brons; Thomas Haberer; Jürgen Debus; Katia Parodi
At the Heidelberg Ion Beam Therapy Center, scanned helium and oxygen ion beams are available in addition to the clinically used protons and carbon ions for physical and biological experiments. In this work, a study of the basic dosimetric features of the different ions is performed in the entire therapeutic energy range. Depth dose distributions are investigated for pencil-like beam irradiation, with and without a modulating ripple filter, focusing on the extraction of key Bragg curve parameters, such as the range, the peak-width and the distal 80%-20% fall-off. Pencil-beam lateral profiles are measured at different depths in water, and parameterized with multiple Gaussian functions. A more complex situation of an extended treatment field is analyzed through a physically optimized spread-out Bragg peak, delivered with beam scanning. The experimental results of this physical beam characterization indicate that helium ions could afford a more conformal treatment and in turn, increased tumor control. This is mainly due to a smaller lateral scattering than with protons, leading to better lateral and distal fall-off, as well as a lower fragmentation tail compared to carbon and oxygen ions. Moreover, the dosimetric dataset can be used directly for comparison with results from analytical dose engines or Monte Carlo codes. Specifically, it was used at the Heidelberg Ion Beam Therapy Center to generate a new input database for a research analytical treatment planning system, as well as for validation of a general purpose Monte Carlo program, in order to lay the groundwork for biological experiments and further patient planning studies.
Physics in Medicine and Biology | 2015
N Krah; M Testa; S Brons; Oliver Jäkel; Katia Parodi; B Voss; I. Rinaldi
We present an optimization method to improve the spatial resolution and the water equivalent thickness (WET) accuracy of ion radiographies. The method is designed for imaging systems measuring for each actively scanned beam spot the lateral position of the pencil beam and at the same time the Bragg curve (behind the target) in discrete steps without relying on tracker detectors to determine the ion trajectory before and after the irradiated volume. Specifically, the method was used for an imaging set-up consisting of a stack of 61 parallel-plate ionization chambers (PPIC) interleaved with absorber plates of polymethyl methacrylate (PMMA) working as a range telescope. The method uses not only the Bragg peak position, but approximates the entire measured Bragg curve as a superposition of differently shifted Bragg curves. Their relative weights allow to reconstruct the distribution of thickness around each scan spot of a heterogeneous phantom. The approach also allows merging the ion radiography with the geometric information of a co-registered x-ray radiography in order to increase its spatial resolution. The method was tested using Monte Carlo simulated and experimental proton radiographies of a PMMA step phantom and an anthropomorphic head phantom. For the step phantom, the effective spatial resolution was found to be 6 and 4 times higher than the nominal resolution for the simulated and experimental radiographies, respectively. For the head phantom, a gamma index was calculated to quantify the conformity of the simulated proton radiographies with a digitally reconstructed radiography (DRR) obtained from an x-ray CT and properly converted into WET. For a distance-to-agreement (DTA) of 2.5u2009mm and a relative WET difference (RWET) of 2.5%, the passing ratio was 100%/85% for the optimized/non-optimized case, respectively. When the optimized proton radiography was merged with the co-registered DRR, the passing ratio was 100% at DTAu2009u2009=u2009u20091.3u2009mm and RWETu2009u2009=u2009u20091.3%. A special interpolation method allows to strongly reduce the dose by using a coarser grid of the measured beam spot position with a 5 times larger grid distance. We show that despite a dose reduction of 25 times (leading to a dose of 0.016 mGy for the current imaging set-up), the image quality of the optimized radiographies remains fairly unaffected for both the simulated and experimental case.
Physics in Medicine and Biology | 2017
Thomas Tessonnier; S Brons; T.T. Böhlen; Jürgen Debus; Katia Parodi; P. Sala; A. Ferrari; F Ceruti; A. Mairani; T Haberer
The introduction of new ion species in particle therapy needs to be supported by a thorough assessment of their dosimetric properties and by treatment planning comparisons with clinically used proton and carbon ion beams. In addition to the latter two ions, helium and oxygen ion beams are foreseen at the Heidelberg Ion Beam Therapy Center (HIT) as potential assets for improving clinical outcomes in the near future. We present in this study a dosimetric validation of a FLUKA-based Monte Carlo treatment planning tool (MCTP) for protons, helium, carbon and oxygen ions for spread-out Bragg peaks in water. The comparisons between the ions show the dosimetric advantages of helium and heavier ion beams in terms of their distal and lateral fall-offs with respect to protons, reducing the lateral size of the region receiving 50% of the planned dose up to 12u2009mm. However, carbon and oxygen ions showed significant doses beyond the target due to the higher fragmentation tail compared to lighter ions (p and He), up to 25%. The Monte Carlo predictions were found to be in excellent geometrical agreement with the measurements, with deviations below 1u2009mm for all parameters investigated such as target and lateral size as well as distal fall-offs. Measured and simulated absolute dose values agreed within about 2.5% on the overall dose distributions. The MCTP tool, which supports the usage of multiple state-of-the-art relative biological effectiveness models, will provide a solid engine for treatment planning comparisons at HIT.
Physics in Medicine and Biology | 2017
Thomas Tessonnier; A. Mairani; S Brons; T Haberer; Jürgen Debus; Katia Parodi
At the Heidelberg Ion Beam Therapy Center, scanned helium and oxygen ion beams are available in addition to the clinically used protons and carbon ions for physical and biological experiments. In this work, a study of the basic dosimetric features of the different ions is performed in the entire therapeutic energy range. Depth dose distributions are investigated for pencil-like beam irradiation, with and without a modulating ripple filter, focusing on the extraction of key Bragg curve parameters, such as the range, the peak-width and the distal 80%-20% fall-off. Pencil-beam lateral profiles are measured at different depths in water, and parameterized with multiple Gaussian functions. A more complex situation of an extended treatment field is analyzed through a physically optimized spread-out Bragg peak, delivered with beam scanning. The experimental results of this physical beam characterization indicate that helium ions could afford a more conformal treatment and in turn, increased tumor control. This is mainly due to a smaller lateral scattering than with protons, leading to better lateral and distal fall-off, as well as a lower fragmentation tail compared to carbon and oxygen ions. Moreover, the dosimetric dataset can be used directly for comparison with results from analytical dose engines or Monte Carlo codes. Specifically, it was used at the Heidelberg Ion Beam Therapy Center to generate a new input database for a research analytical treatment planning system, as well as for validation of a general purpose Monte Carlo program, in order to lay the groundwork for biological experiments and further patient planning studies.