Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Bruce King is active.

Publication


Featured researches published by S. Bruce King.


Journal of Biological Chemistry | 2008

Nitrite reductase activity of cytochrome c.

Swati Basu; Natalia A. Azarova; Michael D. Font; S. Bruce King; Neil Hogg; Mark T. Gladwin; Sruti Shiva; Daniel B. Kim-Shapiro

Small increases in physiological nitrite concentrations have now been shown to mediate a number of biological responses, including hypoxic vasodilation, cytoprotection after ischemia/reperfusion, and regulation of gene and protein expression. Thus, while nitrite was until recently believed to be biologically inert, it is now recognized as a potentially important hypoxic signaling molecule and therapeutic agent. Nitrite mediates signaling through its reduction to nitric oxide, via reactions with several heme-containing proteins. In this report, we show for the first time that the mitochondrial electron carrier cytochrome c can also effectively reduce nitrite to NO. This nitrite reductase activity is highly regulated as it is dependent on pentacoordination of the heme iron in the protein and occurs under anoxic and acidic conditions. Further, we demonstrate that in the presence of nitrite, pentacoordinate cytochrome c generates bioavailable NO that is able to inhibit mitochondrial respiration. These data suggest an additional role for cytochrome c as a nitrite reductase that may play an important role in regulating mitochondrial function and contributing to hypoxic, redox, and apoptotic signaling within the cell.


Nitric Oxide | 2011

Acute effect of a high nitrate diet on brain perfusion in older adults

Tennille Presley; Ashley R. Morgan; Erika Bechtold; William Clodfelter; Robin W. Dove; Janine M. Jennings; Robert A. Kraft; S. Bruce King; Paul J. Laurienti; W. Jack Rejeski; Jonathan H. Burdette; Daniel B. Kim-Shapiro; Gary D. Miller

AIMS Poor blood flow and hypoxia/ischemia contribute to many disease states and may also be a factor in the decline of physical and cognitive function in aging. Nitrite has been discovered to be a vasodilator that is preferentially harnessed in hypoxia. Thus, both infused and inhaled nitrite are being studied as therapeutic agents for a variety of diseases. In addition, nitrite derived from nitrate in the diet has been shown to decrease blood pressure and improve exercise performance. Thus, dietary nitrate may also be important when increased blood flow in hypoxic or ischemic areas is indicated. These conditions could include age-associated dementia and cognitive decline. The goal of this study was to determine if dietary nitrate would increase cerebral blood flow in older adults. METHODS AND RESULTS In this investigation we administered a high vs. low nitrate diet to older adults (74.7±6.9 years) and measured cerebral perfusion using arterial spin labeling magnetic resonance imaging. We found that the high nitrate diet did not alter global cerebral perfusion, but did lead to increased regional cerebral perfusion in frontal lobe white matter, especially between the dorsolateral prefrontal cortex and anterior cingulate cortex. CONCLUSION These results suggest that dietary nitrate may be useful in improving regional brain perfusion in older adults in critical brain areas known to be involved in executive functioning.


Biochimica et Biophysica Acta | 2001

Nitric oxide binding to oxygenated hemoglobin under physiological conditions

Zhi Huang; Joseph G. Louderback; Mansi Goyal; Fouad Azizi; S. Bruce King; Daniel B. Kim-Shapiro

We have added nitric oxide (NO) to hemoglobin in 0.1 M and 0.01 M phosphate buffers as well as to whole blood, all as a function of hemoglobin oxygen saturation. We found that in all these conditions, the amount of nitrosyl hemoglobin (HbNO) formed follows a model where the rates of HbNO formation and methemoglobin (metHb) formation (via hemoglobin oxidation) are independent of oxygen saturation. These results contradict those of an earlier report where, at least in 0.01 M phosphate, an elevated amount of HbNO was formed at high oxygen saturations. A radical rethink of the reaction of oxyhemoglobin with NO under physiological conditions was called for based on this previous proposition that the primary product is HbNO rather than metHb and nitrate. Our results indicate that no such radical rethink is called for.


Journal of Immunology | 2007

The requirement of reversible cysteine sulfenic acid formation for T cell activation and function

Ryan D. Michalek; Kimberly J. Nelson; Beth C. Holbrook; John S. Yi; Daya Stridiron; Larry W. Daniel; Jacquelyn S. Fetrow; S. Bruce King; Leslie B. Poole; Jason M. Grayson

Reactive oxygen intermediates (ROI) generated in response to receptor stimulation play an important role in mediating cellular responses. We have examined the importance of reversible cysteine sulfenic acid formation in naive CD8+ T cell activation and proliferation. We observed that, within minutes of T cell activation, naive CD8+ T cells increased ROI levels in a manner dependent upon Ag concentration. Increased ROI resulted in elevated levels of cysteine sulfenic acid in the total proteome. Analysis of specific proteins revealed that the protein tyrosine phosphatases SHP-1 and SHP-2, as well as actin, underwent increased sulfenic acid modification following stimulation. To examine the contribution of reversible cysteine sulfenic acid formation to T cell activation, increasing concentrations of 5,5-dimethyl-1,3-cyclohexanedione (dimedone), which covalently binds to cysteine sulfenic acid, were added to cultures. Subsequent experiments demonstrated that the reversible formation of cysteine sulfenic acid was critical for ERK1/2 phosphorylation, calcium flux, cell growth, and proliferation of naive CD8+ and CD4+ T cells. We also found that TNF-α production by effector and memory CD8+ T cells was more sensitive to the inhibition of reversible cysteine sulfenic acid formation than IFN-γ. Together, these results demonstrate that reversible cysteine sulfenic acid formation is an important regulatory mechanism by which CD8+ T cells are able to modulate signaling, proliferation, and function.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Isoform-specific regulation of Akt by PDGF-induced reactive oxygen species

Revati Wani; Jiang Qian; Leimiao Yin; Erika Bechtold; S. Bruce King; Leslie B. Poole; Eunok Paek; Allen W. Tsang; Cristina M. Furdui

Isoform-specific signaling of Akt, a major signaling hub and a prominent therapeutic target, remained poorly defined until recently. Subcellular distribution, tissue-specific expression, substrate specificity, and posttranslational modifications are believed to underlie isoform-specific signaling of Akt. The studies reported here show inhibition of Akt2 activity under physiologically relevant conditions of oxidation created by PDGF-induced reactive oxygen species. Combined MS and functional assays identified Cys124 located in the linker region between the N-terminal pleckstrin homology domain and the catalytic kinase domain as one of the unique regulatory redox sites in Akt2 with functional consequence on PDGF-stimulated glucose uptake. A model is proposed describing the consequence of increased endogenous oxidation induced by extracellular cues such as PDGF on Akt2 activity.


Methods in Enzymology | 2010

Use of dimedone-based chemical probes for sulfenic acid detection evaluation of conditions affecting probe incorporation into redox-sensitive proteins.

Chananat Klomsiri; Kimberly J. Nelson; Erika Bechtold; Laura Soito; Lynnette C. Johnson; W. Todd Lowther; Seong Eon Ryu; S. Bruce King; Cristina M. Furdui; Leslie B. Poole

Sulfenic acids, formed as transient intermediates during the reaction of cysteine residues with peroxides, play significant roles in enzyme catalysis and regulation, and are also involved in the redox regulation of transcription factors and other signaling proteins. Therefore, interest in the identification of protein sulfenic acids has grown substantially in the past few years. Dimedone, which specifically traps sulfenic acids, has provided the basis for the synthesis of a novel group of compounds that derivatize 1,3-cyclohexadione, a dimedone analogue, with reporter tags such as biotin for affinity capture and fluorescent labels for visual detection. These reagents allow identification of the cysteine sites and proteins that are sensitive to oxidation and permit identification of the cellular conditions under which such oxidations occur. We have shown that these compounds are reactive and specific toward sulfenic acids and that the labeled proteins can be detected at high sensitivity using gel analysis or mass spectrometry. Here, we further characterize these reagents, showing that the DCP-Bio1 incorporation rates into three sulfenic acid containing proteins, papaya papain, Escherichia coli fRMsr, and the Salmonella typhimurium peroxiredoxin AhpC, are significantly different and, in the case of fRMsr, are unaffected by changes in buffer pH from 5.5 and 8.0. We also provide protocols to label protein sulfenic acids in cellular proteins, either by in situ labeling of intact cells or by labeling at the time of lysis. We show that the addition of alkylating reagents and catalase to the lysis buffer is critical in preventing the formation of sulfenic acid subsequent to cell lysis. Data presented herein also indicate that the need to standardize, as much as possible, the protein and reagent concentrations during labeling. Finally, we introduce several new test or control proteins that can be used to evaluate labeling procedures and efficiencies.


Journal of the American Chemical Society | 2011

Rapid and selective nitroxyl (HNO) trapping by phosphines: kinetics and new aqueous ligations for HNO detection and quantitation

Julie A. Reisz; Charles N. Zink; S. Bruce King

Recent studies distinguish the biological and pharmacological effects of nitroxyl (HNO) from its oxidized/deprotonated product nitric oxide (·NO), but the lack of HNO detection methods limits the understanding its in vivo mechanisms and the identification of endogenous sources. We previously demonstrated that reaction of HNO with triarylphosphines provides aza-ylides and HNO-derived amides, which may serve as stable HNO biomarkers. We now report a kinetic analysis for the trapping of HNO by phosphines, ligations of enzyme-generated HNO, and compatibility studies illustrating the selectivity of phosphines for HNO over other physiologically relevant nitrogen oxides. Quantification of HNO using phosphines is demonstrated using an HPLC-based assay and ligations of phosphine carbamates generate HNO-derived ureas. These results further demonstrate the potential of phosphine probes for reliable biological detection and quantification of HNO.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Measurements of nitric oxide on the heme iron and β-93 thiol of human hemoglobin during cycles of oxygenation and deoxygenation

Xiuli Xu; Man Cho; Netanya Y. Spencer; Neil K. Patel; Zhi Huang; Howard Shields; S. Bruce King; Mark T. Gladwin; Neil Hogg; Daniel B. Kim-Shapiro

Nitric oxide has been proposed to be transported by hemoglobin as a third respiratory gas and to elicit vasodilation by an oxygen-linked (allosteric) mechanism. For hemoglobin to transport nitric oxide bioactivity it must capture nitric oxide as iron nitrosyl hemoglobin rather than destroy it by dioxygenation. Once bound to the heme iron, nitric oxide has been reported to migrate reversibly from the heme group of hemoglobin to the β-93 cysteinyl residue, in response to an oxygen saturation-dependent conformational change, to form an S-nitrosothiol. However, such a transfer requires redox chemistry with oxidation of the nitric oxide or β-93 cysteinyl residue. In this article, we examine the ability of nitric oxide to undergo this intramolecular transfer by cycling human hemoglobin between oxygenated and deoxygenated states. Under various conditions, we found no evidence for intramolecular transfer of nitric oxide from either cysteine to heme or heme to cysteine. In addition, we observed that contaminating nitrite can lead to formation of iron nitrosyl hemoglobin in deoxygenated hemoglobin preparations and a radical in oxygenated hemoglobin preparations. Using 15N-labeled nitrite, we clearly demonstrate that nitrite chemistry could explain previously reported results that suggested apparent nitric oxide cycling from heme to thiol. Consistent with our results from these experiments conducted in vitro, we found no arterial/venous gradient of iron nitrosyl hemoglobin detectable by electron paramagnetic resonance spectroscopy. Our results do not support a role for allosterically controlled intramolecular transfer of nitric oxide in hemoglobin as a function of oxygen saturation.


Journal of Biological Chemistry | 2009

The effects of nitroxyl (HNO) on soluble guanylate cyclase activity: interactions at ferrous heme and cysteine thiols

Thomas W. Miller; Melisa M. Cherney; Andrea J. Lee; Nestor E. Francoleon; Patrick J. Farmer; S. Bruce King; Adrian J. Hobbs; Katrina M. Miranda; Judith N. Burstyn; Jon M. Fukuto

It has been previously proposed that nitric oxide (NO) is the only biologically relevant nitrogen oxide capable of activating the enzyme soluble guanylate cyclase (sGC). However, recent reports implicate HNO as another possible activator of sGC. Herein, we examine the affect of HNO donors on the activity of purified bovine lung sGC and find that, indeed, HNO is capable of activating this enzyme. Like NO, HNO activation appears to occur via interaction with the regulatory ferrous heme on sGC. Somewhat unexpectedly, HNO does not activate the ferric form of the enzyme. Finally, HNO-mediated cysteine thiol modification appears to also affect enzyme activity leading to inhibition. Thus, sGC activity can be regulated by HNO via interactions at both the regulatory heme and cysteine thiols.


Free Radical Biology and Medicine | 2008

Generation of nitroxyl by heme protein-mediated peroxidation of hydroxylamine but not N-hydroxy-L-arginine.

Sonia Donzelli; Michael Graham Espey; Wilmarie Flores-Santana; Christopher H. Switzer; Grace C. Yeh; Jinming Huang; Dennis J. Stuehr; S. Bruce King; Katrina M. Miranda; David A. Wink

The chemical reactivity, toxicology, and pharmacological responses to nitroxyl (HNO) are often distinctly different from those of nitric oxide (NO). The discovery that HNO donors may have pharmacological utility for treatment of cardiovascular disorders such as heart failure and ischemia reperfusion has led to increased speculation of potential endogenous pathways for HNO biosynthesis. Here, the ability of heme proteins to utilize H2O2 to oxidize hydroxylamine (NH2OH) or N-hydroxy-L-arginine (NOHA) to HNO was examined. Formation of HNO was evaluated with a recently developed selective assay in which the reaction products in the presence of reduced glutathione (GSH) were quantified by HPLC. Release of HNO from the heme pocket was indicated by formation of sulfinamide (GS(O)NH2), while the yields of nitrite and nitrate signified the degree of intramolecular recombination of HNO with the heme. Formation of GS(O)NH2 was observed upon oxidation of NH2OH, whereas NOHA, the primary intermediate in oxidation of L-arginine by NO synthase, was apparently resistant to oxidation by the heme proteins utilized. In the presence of NH2OH, the highest yields of GS(O)NH2 were observed with proteins in which the heme was coordinated to a histidine (horseradish peroxidase, lactoperoxidase, myeloperoxidase, myoglobin, and hemoglobin) in contrast to a tyrosine (catalase) or cysteine (cytochrome P450). That peroxidation of NH2OH by horseradish peroxidase produced free HNO, which was able to affect intracellular targets, was verified by conversion of 4,5-diaminofluorescein to the corresponding fluorophore within intact cells.

Collaboration


Dive into the S. Bruce King's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie A. Reisz

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Swati Basu

Wake Forest University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge