Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S.C. Cheran is active.

Publication


Featured researches published by S.C. Cheran.


Medical Image Analysis | 2010

Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: The ANODE09 study

Bram van Ginneken; Samuel G. Armato; Bartjan de Hoop; Saskia van Amelsvoort-van de Vorst; Thomas Duindam; Meindert Niemeijer; Keelin Murphy; Arnold M. R. Schilham; Alessandra Retico; Maria Evelina Fantacci; N. Camarlinghi; Francesco Bagagli; Ilaria Gori; Takeshi Hara; Hiroshi Fujita; G. Gargano; Roberto Bellotti; Sabina Tangaro; Lourdes Bolanos; Francesco De Carlo; P. Cerello; S.C. Cheran; Ernesto Lopez Torres; Mathias Prokop

Numerous publications and commercial systems are available that deal with automatic detection of pulmonary nodules in thoracic computed tomography scans, but a comparative study where many systems are applied to the same data set has not yet been performed. This paper introduces ANODE09 ( http://anode09.isi.uu.nl), a database of 55 scans from a lung cancer screening program and a web-based framework for objective evaluation of nodule detection algorithms. Any team can upload results to facilitate benchmarking. The performance of six algorithms for which results are available are compared; five from academic groups and one commercially available system. A method to combine the output of multiple systems is proposed. Results show a substantial performance difference between algorithms, and demonstrate that combining the output of algorithms leads to marked performance improvements.


IEEE Symposium Conference Record Nuclear Science 2004. | 2004

Mammogram segmentation by contour searching and massive lesion classification with neural network

F. Fauci; S. Bagnasco; R. Bellotti; D. Cascio; S.C. Cheran; F. De Carlo; G. De Nunzio; M.E. Fantacci; G. Forni; A. Lauria; Ernesto Lopez Torres; R. Magro; Giovanni Luca Christian Masala; P. Oliva; Maurizio Quarta; G. Raso; Alessandra Retico; S. Tangaro

The mammography is the most effective procedure for an early diagnosis of the breast cancer. In this paper, an algorithm for detecting massive lesions in mammographic images will be presented. The database consists of 3762 digital images acquired in several hospitals belonging to the MAGIC-5 collaboration. A reduction of the surface under investigation is achieved, without loss of meaningful information, through segmentation of the whole image, by means of a ROI Hunter algorithm. In the following classification step, feature extraction plays a fundamental role: some features give geometrical information, other ones provide shape parameters. Once the features are computed for each ROI, they are used as inputs to a supervised neural network with momentum. The output neuron provides the probability that the ROI is pathological or not. Results are provided in terms of ROC and FROC curves; the area under the ROC curve was found to be Az=(85.6plusmn0.8)%. This software is included in the CAD station actually working in the hospitals belonging to the MAGIC-5 Collaboration


Medical Physics | 2007

A CAD system for nodule detection in low‐dose lung CTs based on region growing and a new active contour model

Roberto Bellotti; F. De Carlo; Gianfranco Gargano; S. Tangaro; D. Cascio; Ezio Catanzariti; P. Cerello; S.C. Cheran; Pasquale Delogu; I. De Mitri; C. Fulcheri; D. Grosso; Alessandra Retico; Sandro Squarcia; E. Tommasi; Bruno Golosio

A computer-aided detection (CAD) system for the selection of lung nodules in computer tomography (CT) images is presented. The system is based on region growing (RG) algorithms and a new active contour model (ACM), implementing a local convex hull, able to draw the correct contour of the lung parenchyma and to include the pleural nodules. The CAD consists of three steps: (1) the lung parenchymal volume is segmented by means of a RG algorithm; the pleural nodules are included through the new ACM technique; (2) a RG algorithm is iteratively applied to the previously segmented volume in order to detect the candidate nodules; (3) a double-threshold cut and a neural network are applied to reduce the false positives (FPs). After having set the parameters on a clinical CT, the system works on whole scans, without the need for any manual selection. The CT database was recorded at the Pisa center of the ITALUNG-CT trial, the first Italian randomized controlled trial for the screening of the lung cancer. The detection rate of the system is 88.5% with 6.6 FPs/CT on 15 CT scans (about 4700 sectional images) with 26 nodules: 15 internal and 11 pleural. A reduction to 2.47 FPs/CT is achieved at 80% efficiency.


ieee nuclear science symposium | 2006

Mammogram Segmentation by Contour Searching and Mass Lesions Classification With Neural Network

D. Cascio; F. Fauci; R. Magro; G. Raso; R. Bellotti; F. De Carlo; Sonia Tangaro; G. De Nunzio; G. Forni; A. Lauria; M.E. Fantacci; A. Retico; G.L. Masala; P. Oliva; S. Bagnasco; S.C. Cheran; E.L. Torres

The mammography is the most effective procedure for an early diagnosis of the breast cancer. In this paper, an algorithm for detecting masses in mammographic images will be presented. The database consists of 3762 digital images acquired in several hospitals belonging to the MAGIC-5 collaboration (Medical Applications on a Grid Infrastructure Connection). A reduction of the whole images area under investigation is achieved through a segmentation process, by means of a ROI Hunter algorithm, without loss of meaningful information. In the following classification step, feature extraction plays a fundamental role: some features give geometrical information, other ones provide shape parameters. Once the features are computed for each ROI, they are used as inputs to a supervised neural network with momentum. The output neuron provides the probability that the ROI is pathological or not. Results are provided in terms of ROC and FROC curves: the area under the ROC curve was found to be AZ=0.862plusmn0.007, and we get a 2.8 FP/Image at a sensitivity of 82%. This software is included in the CAD station actually working in the hospitals belonging to the MAGIC-5 Collaboration


Radiologia Medica | 2008

MAGIC-5: an Italian mammographic database of digitised images for research

Sabina Tangaro; Roberto Bellotti; F. De Carlo; Gianfranco Gargano; E. Lattanzio; P. Monno; R. Massafra; Pasquale Delogu; Maria Evelina Fantacci; A. Retico; Massimo Bazzocchi; S. Bagnasco; P. Cerello; S.C. Cheran; E. Lopez Torres; Zanon E; A. Lauria; Antonio Sodano; D. Cascio; F. Fauci; R. Magro; G. Raso; R. Ienzi; U. Bottigli; Giovanni Luca Christian Masala; P. Oliva; G. Meloni; A. P. Caricato; R. Cataldo

The implementation of a database of digitised mammograms is discussed. The digitised images were collected beginning in 1999 by a community of physicists in collaboration with radiologists in several Italian hospitals as a first step in developing and implementing a computer-aided detection (CAD) system. All 3,369 mammograms were collected from 967 patients and classified according to lesion type and morphology, breast tissue and pathology type. A dedicated graphical user interface was developed to visualise and process mammograms to support the medical diagnosis directly on a high-resolution screen. The database has been the starting point for developing other medical imaging applications, such as a breast CAD, currently being upgraded and optimised for use in a distributed environment with grid services, in the framework of the Instituto Nazionale di Fisicia Nucleare (INFN)-funded Medical Applications on a Grid Infrastructure Connection (MAGIC)-5 project.RiassuntoIn qesto lavoro viene discussa l’implementazione di un database immagini mammografiche digitalizzate. Le immagini sono state raccolte dal 1999 da un gruppo di fisici in collaborazione con radiology di alcuni ospedali italiani, come primo passo dello sviluppo e implementazione di un sistema di Computer Aided Detection (CAD). I 3369 mammogrammi appartengono a 967 pazienti e sono classificati secondo I tipi e la morfologia delle lesioni, il tessuto mammario e i tipi di patologie. Una interfaccia grafica opportunamente progettata è stata sviluppata per la visualizzazione e l’elaborazione delle mammografie digitalizzate al fine di runpoter supportare direttamente una diagnosi medica su monitor ad alta risoluzione. Il database ha rappresentato il punto di partenza per lo sviluppo di altre applicazioni di imaging medicale come il CAD mammografico costantemente ottimizzato e aggiornato con l’uso di un ambiente distribuito che dispone di servizi GRID, nel framework del progetto MAGIC-5, finanziato dell’INFN.


symbolic and numeric algorithms for scientific computing | 2005

Computer aided diagnosis for lung CT using artificial life models

S.C. Cheran; G. Gargano

With the present paper we introduce a new computer assisted detection method for lung cancer from CT images. The algorithm is based on different algorithms like: 3D region growing, active contour and shape models, centre of maximal balls but we can say that at the core of our approach are the biological models of ants also known as artificial life models. In the first step of the algorithm the images are undergoing a 3D region growing for identifying the ribcage. Once the ribcage is identified an active contour is used in order to build a confined area for the incoming ants that are deployed to make clean and accurate reconstruction of the bronchial and vascular tree. Next the branches of the newly reconstructed trees are checked to see whether they include nodules or not by using active shape models and to also to see if there are any nodules attached to the pleura of the lungs (centre of maximal balls). The next step is to remove the trees in order to provide a cleaner algorithm for localizing the nodules which is achieved by applying snakes and dot enhancement algorithms.


ieee nuclear science symposium | 2006

Lung Nodule Detection in Screening Computed Tomography

Ilaria Gori; Roberto Bellotti; P. Cerello; S.C. Cheran; G. De Nunzio; M.E. Fantacci; P. Kasae; Giovanni Luca Christian Masala; A. Preite Martinez; Alessandra Retico

A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector helical Computed Tomography (CT) images with 1.25 mm slice thickness is presented. The basic modules of our lung-CAD system, a dot-enhancement filter for nodule candidate selection and a neural classifier for false-positive finding reduction, are described. The results obtained on the collected database of lung CT scans are discussed.


international conference on computational intelligence for measurement systems and applications | 2007

A novel Active Contour Model algorithm for contour detection in complex objects

G. Gargano; R. Bellotti; F. de Carlo; S. Tangaro; E. Tommasi; Marcello Castellano; P. Cerello; S.C. Cheran; C. Fulcheri

A new active contour model (ACM) algorithm for the detection of the contour of bi-dimensional regions is presented. The algorithm is based on the simulation of an elastic band glued to the contour of the region under analysis. As a result a local convex hull is obtained, where the radius of the concave regions included by the elastic band is defined by properly tuning a parameter. A dedicated application to medical images is presented. The algorithm is part of a segmentation system able to extract the lung volume from 3D CT scans. The effectiveness of the algorithm is evaluated on a database of 15 low-dose CT scans (about 320 sectional images per CT), including 26 nodules. No pathological structure is missing after the lung volume segmentation, while a reduction of the volume to analyze is obtained to about 15% of the total volume of the original CT scan, and 25% of the chest volume.


Filtration & Separation | 2004

Detection and classification of microcalcifications clusters in digitized mammograms

S.C. Cheran; Rosella Cataldo; P. Cerello; F. De Carlo; F. Fauci; G. Fomi; Bruno Golosio; A. Lauria; E. Lopez Torres; I. De Mitri; Giovanni Luca Christian Masala; G. Raso; Alessandra Retico; A. Tata

In the present paper we discuss a new approach for the detection of microcalcification clusters, based on neural networks and developed as part of the MAGIC-5 project, an INFN-funded program which aims at the development and implementation of CAD algorithms in a GRID-based distributed environment. The proposed approach has as its roots the desire to maximize the rejection of background during the analytical pre-processing stage, in order to train and test the neural network with as clean as possible a sample and therefore maximize its performance. The algorithm is composed of three modules: the image pre-processing, the feature extraction component and the Backpropagation Neural Network module. The First module comprises the use of several algorithms: H-Dome Transformation, Masking, Binarisation of grayscale images, Connected Components Labeling; for the classification, initially 27 features are extracted from the output image, features that are statistically analyzed and reduced to 17, which are used as input to the Backpropagation Neural Network. The algorithm was trained (tested) on 139 (139) images respectively, containing 149 (152) true clusters and 146 (415) false


Lecture Notes in Computer Science | 2006

Artificial life models in lung CTs

S.C. Cheran; G. Gargano

With the present paper we introduce a new Computer Assisted Detection method for Lung Cancer in CT images. The algorithm is based on several sub-modules: 3D Region Growing, Active Contour And Shape Models, Centre of Maximal Balls, but the core of our approach are Biological Models of ants known as Artificial Life models. In the first step of the algorithm images undergo a 3D region growing procedure for identifying the ribs cage; then Active Contour Models are used in order to build a confined area for the incoming ants that are deployed to make clean and accurate reconstruction of the bronchial and vascular tree, which is removed from the image just before checking for nodules.

Collaboration


Dive into the S.C. Cheran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Cerello

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

F. Fauci

University of Palermo

View shared research outputs
Top Co-Authors

Avatar

Alessandra Retico

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

G. Raso

University of Palermo

View shared research outputs
Top Co-Authors

Avatar

P. Oliva

University of Sassari

View shared research outputs
Top Co-Authors

Avatar

Roberto Bellotti

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

R. Magro

University of Palermo

View shared research outputs
Top Co-Authors

Avatar

A. Lauria

University of Sassari

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge