S. C. Gallagher
University of Western Ontario
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. C. Gallagher.
The Astronomical Journal | 2011
Gordon T. Richards; Nicholas Kruczek; S. C. Gallagher; Patrick B. Hall; Paul C. Hewett; Karen M. Leighly; Rajesh P. Deo; Rachael M. Kratzer; Yue Shen
Using a sample of ~30,000 quasars from the 7th Data Release of the Sloan Digital Sky Survey, we explore the range of properties exhibited by high-ionization, broad emission lines, such as C IV λ1549. Specifically, we investigate the anti-correlation between continuum luminosity and emission-line equivalent width (the Baldwin Effect (BEff)) and the blueshifting of the high-ionization emission lines with respect to low-ionization emission lines. Employing improved redshift determinations from Hewett & Wild, the blueshift of the C IV emission line is found to be nearly ubiquitous, with a mean shift of ~810 km s–1 for radio-quiet (RQ) quasars and ~360 km s–1 for radio-loud (RL) quasars. The BEff is present in both RQ and RL samples. We consider these phenomena within the context of an accretion disk-wind model that is modulated by the nonlinear correlation between ultraviolet and X-ray continuum luminosity. Composite spectra are constructed as a function of C IV emission-line properties in an attempt to reveal empirical relationships between different line species and the continuum. Within a two-component disk+wind model of the broad emission-line region (BELR), where the wind filters the continuum seen by the disk component, we find that RL quasars are consistent with being dominated by the disk component, while broad absorption line quasars are consistent with being dominated by the wind component. Some RQ objects have emission-line features similar to RL quasars; they may simply have insufficient black hole (BH) spin to form radio jets. Our results suggest that there could be significant systematic errors in the determination of L bol and BH mass that make it difficult to place these findings in a more physical context. However, it is possible to classify quasars in a paradigm where the diversity of BELR parameters is due to differences in an accretion disk wind between quasars (and over time); these differences are underlain primarily by the spectral energy distribution, which ultimately must be tied to BH mass and accretion rate.
Astrophysical Journal Supplement Series | 2011
Zhaohui Shang; Michael S. Brotherton; Beverley J. Wills; D. Wills; Sabrina L. Cales; Daniel A. Dale; Richard F. Green; Jessie C. Runnoe; R. Nemmen; S. C. Gallagher; Rajib Ganguly; Dean C. Hines; Benjamin J. Kelly; Gerard A. Kriss; Jun Li; Baitian Tang; Yanxia Xie
We have produced the next generation of quasar spectral energy distributions (SEDs), essentially updating the work of Elvis et al. by using high-quality data obtained with several space- and ground-based telescopes, including NASAs Great Observatories. We present an atlas of SEDs of 85 optically bright, non-blazar quasars over the electromagnetic spectrum from radio to X-rays. The heterogeneous sample includes 27 radio-quiet and 58 radio-loud quasars. Most objects have quasi-simultaneous ultraviolet-optical spectroscopic data, supplemented with some far-ultraviolet spectra, and more than half also have Spitzer mid-infrared Infrared Spectrograph spectra. The X-ray spectral parameters are collected from the literature where available. The radio, far-infrared, and near-infrared photometric data are also obtained from either the literature or new observations. We construct composite SEDs for radio-loud and radio-quiet objects and compare these to those of Elvis et al., finding that ours have similar overall shapes, but our improved spectral resolution reveals more detailed features, especially in the mid- and near-infrared.
The Astrophysical Journal | 2008
Robert R. Gibson; W. N. Brandt; Donald P. Schneider; S. C. Gallagher
We use quantitative metrics to characterize the variation of C IV λ1549 broad absorption lines (BALs) over 3-6 (rest-frame) years in a sample of 13 quasars at 1.7 ≤ z≤ 2.8 and compare the results to previous studies of BAL variability on shorter timescales. The strong BALs in our study change in complex ways over 3-6 yr. Variation occurs in discrete regions only a few thousand kilometers per second wide, and the distribution of the change in absorption equivalent width broadens over time. We constrain the typical C IV BAL lifetime to be at least a few decades. While we do not find evidence to support a scenario in which the variation is primarily driven by photoionization on multiyear timescales, there is some indication that the variation is produced by changes in outflow geometry. We do not observe significant changes in the BAL onset velocity, indicating that the absorber is either far from the source or is being continually replenished and is azimuthally symmetric. It is not possible in a human lifetime to expand the timescales in our study by more than a factor of a few using optical spectroscopy. However, the strong variation we have observed in some BALs indicates that future studies of large numbers of BAL QSOs will be valuable to constrain BAL lifetimes and the physics of variation.
The Astrophysical Journal | 2010
Vardha N. Bennert; Tommaso Treu; Jong-Hak Woo; Matthew A. Malkan; Alexandre Le Bris; Matthew W. Auger; S. C. Gallagher; R. D. Blandford
From high-resolution images of 23 Seyfert-1 galaxies at z = 0.36 and z = 0.57 obtained with the Near-Infrared Camera and Multi-Object Spectrometer on board the Hubble Space Telescope (HST), we determine host-galaxy morphology, nuclear luminosity, total host-galaxy luminosity, and spheroid luminosity. Keck spectroscopy is used to estimate black hole mass (M BH). We study the cosmic evolution of the M BH-spheroid luminosity (L sph) relation. In combination with our previous work, totaling 40 Seyfert-1 galaxies, the covered range in BH mass is substantially increased, allowing us to determine for the first time intrinsic scatter and correct evolutionary trends for selection effects. We re-analyze archival HST images of 19 local reverberation-mapped active galaxies to match the procedure adopted at intermediate redshift. Correcting spheroid luminosity for passive luminosity evolution and taking into account selection effects, we determine that at fixed present-day V-band spheroid luminosity, M BH/L sph?(1 + z)2.8? 1.2. When including a sample of 44 quasars out to z = 4.5 taken from the literature, with luminosity and BH mass corrected to a self-consistent calibration, we extend the BH mass range to over 2 orders of magnitude, resulting in M BH/L sph (1 + z)1.4? 0.2. The intrinsic scatter of the relation, assumed constant with redshift, is 0.3?? 0.1 dex (<0.6 dex at 95% CL). The evolutionary trend suggests that BH growth precedes spheroid assembly. Interestingly, the M BH-total-host-galaxy-luminosity relation is apparently non-evolving. It hints at either a more fundamental relation or that the spheroid grows by a redistribution of stars. However, the high-z sample does not follow this relation, indicating that major mergers may play the dominant role in growing spheroids above z 1.
The Astrophysical Journal | 2010
Robert R. Gibson; W. N. Brandt; S. C. Gallagher; Paul C. Hewett; Donald P. Schneider
We investigate the variability of C IV λ1549 broad absorption line (BAL) troughs over rest-frame timescales of up to 7 yr in 14 quasars at redshifts z 2.1. For nine sources at sufficiently high redshift, we also compare the C IV and Si IV λ1400 absorption variation. We compare shorter and longer term variability using spectra from up to four different epochs per source and find complex patterns of variation in the sample overall. The scatter in the change of absorption equivalent width (EW), ΔEW, increases with the time between observations. BALs do not, in general, strengthen or weaken monotonically, and variation observed over shorter (months) timescales is not predictive of multi-year variation. We find no evidence for asymmetry in the distribution of ΔEW that would indicate that BALs form and decay on different timescales, and we constrain the typical BAL lifetime to be 30 yr. The BAL absorption for one source, LBQS 0022+0150, has weakened and may now be classified as a mini-BAL. Another source, 1235+1453, shows evidence of variable, blue continuum emission that is relatively unabsorbed by the BAL outflow. C IV and Si IV BAL shape changes are related in at least some sources. Given their high velocities, BAL outflows apparently traverse large spatial regions and may interact with parsec-scale structures such as an obscuring torus. Assuming BAL outflows are launched from a rotating accretion disk, notable azimuthal symmetry is required in the outflow to explain the relatively small changes observed in velocity structure over times up to 7 yr.
The Astrophysical Journal | 2013
P. N. Appleton; Pierre Guillard; F. Boulanger; Michelle E. Cluver; P. Ogle; E. Falgarone; G. Pineau des Forêts; Ewan O'Sullivan; P.-A. Duc; S. C. Gallagher; Yu Gao; Thomas Harold Jarrett; I. S. Konstantopoulos; Ute Lisenfeld; S. Lord; N. Lu; B. W. Peterson; Curtis Struck; E. Sturm; Richard J. Tuffs; I. Valchanov; P. van der Werf; K. C. Xu
We present the first Herschel spectroscopic detections of the [OI]63µm and [CII]158µm fine-structure transitions, and a single para-H_2O line from the 35 x 15 kpc^2 shocked intergalactic filament in Stephans Quintet. The filament is believed to have been formed when a high-speed intruder to the group collided with clumpy intergroup gas. Observations with the PACS spectrometer provide evidence for broad (> 1000 km s^(-1)) luminous [CII] line profiles, as well as fainter [OI]63µm emission. SPIRE FTS observations reveal water emission from the p-H_2O (1_(11)-0_(00)) transition at several positions in the filament, but no other molecular lines. The H_2O line is narrow, and may be associated with denser intermediate-velocity gas experiencing the strongest shock-heating. The [CII]/PAH_(tot) and [CII]/FIR ratios are too large to be explained by normal photo-electric heating in PDRs. HII region excitation or X-ray/Cosmic Ray heating can also be ruled out. The observations lead to the conclusion that a large fraction the molecular gas is diffuse and warm. We propose that the [CII], [OI] and warm H_2 line emission is powered by a turbulent cascade in which kinetic energy from the galaxy collision with the IGM is dissipated to small scales and low-velocities, via shocks and turbulent eddies. Low-velocity magnetic shocks can help explain both the [CII]/[OI] ratio, and the relatively high [CII]/H_2 ratios observed. The discovery that [CII] emission can be enhanced, in large-scale turbulent regions in collisional environments has implications for the interpretation of [CII] emission in high-z galaxies.
The Astrophysical Journal | 2011
Rajesh P. Deo; Gordon T. Richards; Robert Nikutta; Moshe Elitzur; S. C. Gallagher; Željko Ivezić; Dean C. Hines
We present Spitzer infrared (IR) spectra and ultraviolet (UV) to mid-IR spectral energy distributions (SEDs) of 25 luminous type 1 quasars at z ~ 2. In general, the spectra show a bump peaking around 3 μm and the 10 μm silicate emission feature. The 3 μm emission is identified with hot dust emission at its sublimation temperature. We explore two approaches to modeling the SED: (1) using the CLUMPY model SED from Nenkova et al. and (2) the CLUMPY model SED and an additional blackbody component to represent the 3 μm emission. In the first case, a parameter search of ~1.25 million CLUMPY models shows that (1) if we ignore the UV-to-near-IR SED, models fit the 2-8 μm region well, but not the 10 μm feature; (2) if we include the UV-to-near-IR SED in the fit, models do not fit the 2-8 μm region. The observed 10 μm features are broader and shallower than those in the best-fit models in the first approach. In the second case, the shape of the 10 μm feature is better reproduced by the CLUMPY models. The additional blackbody contribution in the 2-8 μm range allows CLUMPY models dominated by cooler temperatures (T < 800 K) to better fit the 8-12 μm SED. A centrally concentrated distribution of a small number of torus clouds is required in the first case, while in the second case the clouds are more spread out radially. The temperature of the blackbody component is ~1200 K as expected for graphite grains.
The Astronomical Journal | 2010
Lisa May Walker; Kelsey E. Johnson; S. C. Gallagher; John E. Hibbard; Ann Hornschemeier; Panayiotis Tzanavaris; Jane C. Charlton; T. H. Jarrett
Compact galaxy groups are at the extremes of the group environment, with high number densities and low velocity dispersions that likely affect member galaxy evolution. To explore the impact of this environment in detail, we examine the distribution in the mid-infrared (MIR) 3.6-8.0 micron colorspace of 42 galaxies from 12 Hickson compact groups in comparison with several control samples, including the LVL+SINGS galaxies, interacting galaxies, and galaxies from the Coma Cluster. We find that the HCG galaxies are strongly bimodal, with statistically significant evidence for a gap in their distribution. In contrast, none of the other samples show such a marked gap, and only galaxies in the Coma infall region have a distribution that is statistically consistent with the HCGs in this parameter space. To further investigate the cause of the HCG gap, we compare the galaxy morphologies of the HCG and LVL+SINGS galaxies, and also probe the specific star formation rate (SSFR) of the HCG galaxies. While galaxy morphology in HCG galaxies is strongly linked to position with MIR colorspace, the more fundamental property appears to be the SSFR, or star formation rate normalized by stellar mass. We conclude that the unusual MIR color distribution of HCG galaxies is a direct product of their environment, which is most similar to that of the Coma infall region. In both cases, galaxy densities are high, but gas has not been fully processed or stripped. We speculate that the compact group environment fosters accelerated evolution of galaxies from star-forming and neutral gas-rich to quiescent and neutral gas-poor, leaving few members in the MIR gap at any time.
The Astrophysical Journal | 2010
I. S. Konstantopoulos; S. C. Gallagher; K. Fedotov; Patrick R. Durrell; Amanda Heiderman; Debra Meloy Elmegreen; Jane C. Charlton; John E. Hibbard; Panayiotis Tzanavaris; Rupali Chandar; K. E. Johnson; Aparna Maybhate; A. E. Zabludoff; Caryl Gronwall; D. Szathmary; Ann Hornschemeier; Jayanne English; Brad Whitmore; C. Mendes de Oliveira; John S. Mulchaey
The environment where galaxies are found heavily influences their evolution. Close groupings, like the ones in the cores of galaxy clusters or compact groups, evolve in ways far more dramatic than their isolated counterparts. We have conducted a multi-wavelength study of Hickson Compact Group 7 (HCG?7), consisting of four giant galaxies: three spirals and one lenticular. We use Hubble Space Telescope (HST) imaging to identify and characterize the young and old star cluster populations. We find young massive clusters (YMCs) mostly in the three spirals, while the lenticular features a large, unimodal population of globular clusters (GCs) but no detectable clusters with ages less than a few Gyr. The spatial and approximate age distributions of the ~300 YMCs and ~150 GCs thus hint at a regular star formation history in the group over a Hubble time. While at first glance the HST data show the galaxies as undisturbed, our deep ground-based, wide-field imaging that extends the HST coverage reveals faint signatures of stellar material in the intragroup medium (IGM). We do not, however, detect the IGM in H I or Chandra X-ray observations, signatures that would be expected to arise from major mergers. Despite this fact, we find that the H I gas content of the individual galaxies and the group as a whole are a third of the expected abundance. The appearance of quiescence is challenged by spectroscopy that reveals an intense ionization continuum in one galaxy nucleus, and post-burst characteristics in another. Our spectroscopic survey of dwarf galaxy members yields a single dwarf elliptical galaxy in an apparent stellar tidal feature. Based on all this information, we suggest an evolutionary scenario for HCG?7, whereby the galaxies convert most of their available gas into stars without the influence of major mergers and ultimately result in a dry merger. As the conditions governing compact groups are reminiscent of galaxies at intermediate redshift, we propose that HCGs are appropriate for studying galaxy evolution at z ~ 1-2.
Monthly Notices of the Royal Astronomical Society | 2012
Ting Lu; David G. Gilbank; Sean L. McGee; Michael L. Balogh; S. C. Gallagher
Using the optical data from the Wide component of the CFHT Legacy Survey, and new ultraviolet data from GALEX, we study the colours and specific star formation rates (SSFR) of ~100 galaxy clusters at 0.16 0.7 M_sun/yr at z~0.2 and SFR>1.2 M_sun/yr at z~0.3) have no measurable dependence on the cluster-centric radius, and are consistent with the field values. However, the fraction of galaxies with SFR above these thresholds, and the fraction of optically blue galaxies, are lower for the overdense galaxy population in the cluster outskirts compared with the average field value, at all stellar masses M*>10^{9.8} M_sun and at all radii out to at least 7Mpc. Most interestingly, the fraction of blue galaxies that are forming stars at a rate below our UV detection limit is much higher in all radial bins around our cluster sample, compared with the general field value. This is most noticeable for massive galaxies M*>10^{10.7} M_sun; while almost all blue field galaxies of this mass have detectable star formation, this is true for less than 20% of the blue cluster galaxies, even at 7Mpc from the cluster centre. Our results support a scenario where galaxies are pre-processed in locally overdense regions, in a way that reduces their SFR below our UV detection limit, but not to zero.