Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. C. Ghivizzani is active.

Publication


Featured researches published by S. C. Ghivizzani.


Gene Therapy | 2000

Genetic enhancement of fracture repair: Healing of an experimental segmental defect by adenoviral transfer of the BMP-2 gene

Axel W. A. Baltzer; Christian Lattermann; Janey D. Whalen; Paul H. Wooley; Kurt Weiss; M. Grimm; S. C. Ghivizzani; Paul D. Robbins; Christopher H. Evans

This study evaluated the ability of gene transfer to enhance bone healing. Segmental defects were created surgically in the femora of New Zealand white rabbits. First generation adenoviruses were used as vectors to introduce into the defects genes encoding either human bone morphogenetic protein-2 (BMP-2) or, as a negative control, firefly luciferase. Representative specimens were evaluated histologically after 8 weeks. Healing of the defects was monitored radiographically for 12 weeks, after which time the repair tissue was evaluated biomechanically. By radiological criteria, animals receiving the BMP-2 gene had healed their osseous lesions after 7 weeks, whereas those receiving the luciferase gene had not. Histologic examination of representative rabbits at 8 weeks confirmed ossification across the entire defect in response to the BMP-2 gene, whereas the control defect was predominantly fibrotic and sparsely ossified. At the end of the 12-week experiment, the control femora still showed no radiological signs of stable healing. The difference in radiologically defined healing between the experimental and control groups was statistically significant (P < 0.002). biomechanical testing of the femora at 12 weeks demonstrated statistically significant increases in the mean bending strength (p < 0.005) and bending stiffness (p < 0.05) of the animals treated with the bmp-2 gene. direct, local adenoviral delivery of an osteogenic gene thus led to the healing of an osseous lesion that otherwise would not do so. these promising data encourage the further development of genetic approaches to enhancing bone healing.


Bone | 1999

Adenovirus-mediated direct gene therapy with bone morphogenetic protein-2 produces bone

Douglas S. Musgrave; Patrick Bosch; S. C. Ghivizzani; Paul D. Robbins; Christopher H. Evans; Johnny Huard

The need to improve bone healing permeates the discipline of orthopedic surgery. Bone morphogenetic proteins (BMPs) are capable of inducing ectopic and orthotopic bone formation. However, the ideal approach with which to deliver BMPs remains unknown. Gene therapy to deliver BMPs offers several theoretical advantages over implantation of a recombinant BMP protein, including persistent BMP delivery and eliminating the need for a foreign body carrier. A replication defective adenoviral vector was constructed to carry the rhBMP-2 gene (AdBMP-2). The direct in vivo gene therapy approach was applied in both immunodeficient and immunocompetent animals to produce intramuscular bone as early as 2 weeks following injection. Radiographic and histologic analysis revealed radiodense bone containing mature bone marrow elements. Adenovirus-mediated delivery of a marker gene (beta-galactosidase) into control animals produced no bone but indicated the cells transduced with the AdBMP-2 vector. Furthermore, comparisons between immunodeficient and immunocompetent animals illustrated the magnitude and significance of the immune response. Gene therapy to deliver BMP-2 has innumerable potential clinical applications from bone defect healing to joint replacement prosthesis stabilization. This study is the first to establish the feasibility of in vivo gene therapy to deliver active BMP-2 and produce bone.


Arthritis & Rheumatism | 1999

Gene therapy for rheumatic diseases

Christopher H. Evans; S. C. Ghivizzani; Rui Kang; Thomas S. Muzzonigro; Mary Chester Wasko; James H. Herndon; Paul D. Robbins

Rheumatic diseases are complex and correspondingly difficult to treat. Pharmacologic control has largely rested on the appropriation of preexisting drugs, often, as with methotrexate, as a result of chance observations made while treating other diseases or, as with gold, for reasons based on erroneous, but fortuitous, assumptions about disease mechanisms. During the last 20 years, there has been a dramatic increase in understanding of the basic biology of rheumatic diseases. As a result, it is now possible to design rational new therapeutic strategies based on knowledge, rather than to continue to rely on chance and supposition. Foremost among these new approaches are overlapping efforts to manipulate immune reactivity, cytokine function, and the behavior of inflammatory cells while maintaining the integrity of the affected tissues. The traditional pharmacologic approach to achieving these aims is to design or discover small, diffusible, biomodulatory molecules which can be delivered orally or by injection. Biology provides newer, alternative approaches, including gene therapy. Biologic therapy


Arthritis & Rheumatism | 2000

Genetic enhancement of matrix synthesis by articular chondrocytes: Comparison of different growth factor genes in the presence and absence of interleukin‐1

Patrick Smith; Franklin D. Shuler; Helga I. Georgescu; S. C. Ghivizzani; Brian Johnstone; Christopher Niyibizi; Paul D. Robbins; Christopher H. Evans

OBJECTIVE To determine whether articular chondrocytes express growth factor genes delivered by adenoviral vectors and whether expression of these genes influences matrix synthesis in the presence and absence of interleukin-1 (IL-1). METHODS Monolayer cultures of rabbit articular chondrocytes were infected with recombinant adenovirus carrying genes encoding the following growth factors: insulin-like growth factor 1 (IGF-1), transforming growth factor beta1 (TGFbeta1), and bone morphogenetic protein 2 (BMP-2). As a control, cells were transduced with the lac Z gene. Cultures were also treated with each growth factor supplied as a protein. Levels of gene expression were noted, and the synthesis of proteoglycan, collagen, and noncollagenous proteins was measured by radiolabeling. Collagen was typed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The effects of growth factor gene transfer on proteoglycan synthesis in the presence of IL-1 were also measured. RESULTS The expression of all transgenes was high following adenoviral transduction. Proteoglycan synthesis was stimulated approximately 8-fold by the BMP-2 gene and 2-3-fold by the IGF-1 gene. The effects of BMP-2 and IGF-1 genes were additive upon cotransduction. Synthesis of collagen and noncollagenous proteins, in contrast, was most strongly stimulated by the IGF-1 gene. In each case, collagen typing confirmed the synthesis of type II collagen. IL-1 suppressed proteoglycan synthesis by 50-60%. IGF-1 and TGFbeta genes restored proteoglycan synthesis to control levels in the presence of IL-1. The BMP-2 gene, in contrast, elevated proteoglycan synthesis beyond control levels in the presence of IL-1. CONCLUSION Transfer of growth factor genes to articular chondrocytes can greatly increase matrix synthesis in vitro, even in the presence of the inflammatory cytokine IL-1. This result encourages the further development of gene therapy for the repair of damaged cartilage.


Gene Therapy | 2004

Gene-based approaches for the repair of articular cartilage.

Sb Trippel; S. C. Ghivizzani; Alan J. Nixon

Gene transfer technology has opened novel treatment avenues toward the treatment of damaged musculoskeletal tissues, and may be particularly beneficial to articular cartilage. There is no natural repair mechanism to heal damaged or diseased cartilage. Existing pharmacologic, surgical and cell based treatments may offer temporary relief but are incapable of restoring damaged cartilage to its normal phenotype. Gene transfer provides the capability to achieve sustained, localized presentation of bioactive proteins or gene products to sites of tissue damage. A variety of cDNAs have been cloned which may be used to stimulate biological processes that could improve cartilage healing by (1) inducing mitosis and the synthesis and deposition of cartilage extracellular matrix components by chondrocytes, (2) induction of chondrogenesis by mesenchymal progenitor cells, or (3) inhibiting cellular responses to inflammatory stimuli. The challenge is to adapt this technology into a useful clinical treatment modality. Using different marker genes, the principle of gene delivery to synovium, chondrocytes and mesenchymal progenitor cells has been convincingly demonstrated. Following this, research efforts have begun to move to functional studies. This involves the identification of appropriate gene or gene combinations, incorporation of these cDNAs into appropriate vectors and delivery to specific target cells within the proper biological context to achieve a meaningful therapeutic response. Methods currently being explored range from those as simple as direct delivery of a vector to a cartilage defect, to synthesis of cartilaginous implants through gene-enhanced tissue engineering. Data from recent efficacy studies provide optimism that gene delivery can be harnessed to guide biological processes toward both accelerated and improved articular cartilage repair.


Gene Therapy | 1999

Intra-articular delivery of a herpes simplex virus IL-1Ra gene vector reduces inflammation in a rabbit model of arthritis

Thomas Oligino; S. C. Ghivizzani; Darren Wolfe; Eric R. Lechman; David M. Krisky; Zhibao Mi; Christopher H. Evans; Paul D. Robbins; Joseph C. Glorioso

To evaluate the use of HSV-based vectors for arthritis gene therapy we have constructed a first-generation, ICP4 deficient, replication defective herpes simplex virus (HSV) vector (S/0−) and a second-generation HSV vector derivative (T/0−) deficient for the immediate–early genes ICP4, 22 and 27, each carrying a soluble TNF receptor or IL-1 receptor antagonist transgene cassette. A rabbit synovial-fibroblast line in culture, infected by either vector enabled high-level expression of the transgene product. However, following a single intra-articular injection of the vectors into rabbit knee joints, only the second-generation, HSV T/0− vector expressed detectable levels of soluble TNFR in synovial fluid. Synovial lavage fluid from inoculated joints con- tained up to 12 ng/ml of soluble receptor that persisted at detectable, but reduced levels for at least 7 days. When tested in an experimental model of arthritis generated by intra-articular overexpression of interleukin-1β using retrovirus transduced synovial cells, the HSV T/0− vector expressing the interleukin-1 receptor antagonist was found to inhibit leukocytosis and synovitis significantly. The improved levels and duration of intra-articular transgene expression achieved via HSV-mediated gene delivery suggest that an HSV vector system could be used for therapeutic applications in patients with rheumatoid arthritis (RA) and other joint-related inflammatory diseases.


Clinical Orthopaedics and Related Research | 2000

Ex Vivo Gene Therapy to Produce Bone Using Different Cell Types

Douglas S. Musgrave; Patrick Bosch; Joon Y. Lee; Dalip Pelinkovic; S. C. Ghivizzani; Janey D. Whalen; Christopher Niyibizi; Johnny Huard

Gene therapy and tissue engineering promise to revolutionize orthopaedic surgery. This study comprehensively compares five different cell types in ex vivo gene therapy to produce bone. The cell types include a bone marrow stromal cell line, primary muscle derived cells, primary bone marrow stromal cells, primary articular chondrocytes, and primary fibroblasts. After transduction by an adenovirus encoding for bone morphogenetic protein-2, all of the cell types were capable of secreting bone morphogenetic protein-2. However, the bone marrow stromal cell line and muscle derived cells showed more responsiveness to recombinant human bone morphogenetic protein-2 than did the other cell types. In vivo injection of each of the cell populations transduced to secrete bone morphogenetic protein-2 resulted in bone formation. Radiographic and histologic analyses corroborated the in vitro data regarding bone morphogenetic protein-2 secretion and cellular osteocompetence. This study showed the feasibility of using primary bone marrow stromal cells, primary muscle derived cells, primary articular chondrocytes, primary fibroblasts, and an osteogenesis imperfecta stromal cell line in ex vivo gene therapy to produce bone. The study also showed the advantages and disadvantages inherent in using each cell type.


Gene Therapy | 2004

Gene delivery to cartilage defects using coagulated bone marrow aspirate

Arnulf Pascher; Glyn D. Palmer; Andre F. Steinert; Thomas Oligino; Elvire Gouze; Jean Noel Gouze; Oliver B. Betz; Myron Spector; Paul D. Robbins; Christopher H. Evans; S. C. Ghivizzani

The long-term goal of the present study is to develop a clinically applicable approach to enhance natural repair mechanisms within cartilage lesions by targeting bone marrow-derived cells for genetic modification. To determine if bone marrow-derived cells infiltrating osteochondral defects could be transduced in situ, we implanted collagen–glycosaminoglycan (CG) matrices preloaded with adenoviral vectors containing various marker genes into lesions surgically generated in rabbit femoral condyles. Analysis of the recovered implants showed transgenic expression up to 21 days; however, a considerable portion was found in the synovial lining, indicating leakage of the vector and/or transduced cells from the matrix. As an alternative medium for gene delivery, we investigated the feasibility of using coagulated bone marrow aspirates. Mixture of an adenoviral suspension with the fluid phase of freshly aspirated bone marrow resulted in uniform dispersion of the vector throughout, and levels of transgenic expression in direct proportion to the density of nucleated cells in the ensuing clot. Furthermore, cultures of mesenchymal progenitor cells, previously transduced ex vivo with recombinant adenovirus, were readily incorporated into the coagulate when mixed with fresh aspirate. These vector-seeded and cell-seeded bone marrow clots were found to maintain their structural integrity following extensive culture and maintained transgenic expression in this manner for several weeks. When used in place of the CG matrix as a gene delivery vehicle in vivo, genetically modified bone marrow clots were able to generate similarly high levels of transgenic expression in osteochondral defects with better containment of the vector within the defect. Our results suggest that coagulates formed from aspirated bone marrow may be useful as a means of gene delivery to cartilage and perhaps other musculoskeletal tissues. Cells within the fluid can be readily modified with an adenoviral vector, and the matrix formed from the clot is completely natural, native to the host and is the fundamental platform on which healing and repair of mesenchymal tissues is based.


Gene Therapy | 1997

Direct retrovirus-mediated gene transfer to the synovium of the rabbit knee: implications for arthritis gene therapy

S. C. Ghivizzani; Eric R. Lechman; C Tio; Km Mulé; S Chada; Je McCormack; Christopher H. Evans; Paul D. Robbins

We have investigated the feasibility of using high-titer murine leukemia virus-based retroviral vectors to deliver exogenous genes to naive and chronically inflamed knee joints of rabbits in vivo. Intraarticular injection of retrovirus encoding β-galactosidase (β-gal or lacZ) was found to transduce synoviocytes in both naive and inflamed joints, but a significantly higher number of lacZ+ cells were found in inflamed knees. Using a retrovirus encoding a secretable marker, human growth hormone (hGH), quantitative comparison of ex vivo and in vivo gene delivery methods demonstrated that transgene expression following in vivo gene transfer was at least equivalent to that of the ex vivo method in inflamed knees. In addition, hGH transgene expression was maintained for at least 4 weeks. These experiments suggest that high-titer retroviral vector could be used for efficient in vivo gene transfer to inflamed joints in patients with rheumatoid arthritis (RA).


Gene Therapy | 2005

Gene-mediated restoration of cartilage matrix by combination insulin-like growth factor-I/interleukin-1 receptor antagonist therapy.

Alan J. Nixon; Jennifer L. Haupt; David D. Frisbie; S S Morisset; C W McIlwraith; Paul D. Robbins; Christopher H. Evans; S. C. Ghivizzani

Combination of growth factor gene-enhanced cartilage matrix synthesis with interleukin-1 receptor antagonist protein (IL-1Ra) abrogation of cartilage matrix degradation may reduce and possibly reverse cartilage loss in synovitis and osteoarthritis. The feasibility of cotransduction of synovial membrane with two such genes that may act on cartilage homeostasis was investigated in an in vitro coculture system. Cultured synoviocytes in monolayer were cotransduced with E1-deleted adenoviral vectors, one containing IGF-I coding sequence under cytomegalovirus (CMV) promoter control (200 multiplicities of infection (moi)), and the second containing IL-1Ra sequence under CMV promoter control (100 moi). Adenovirus-IGF-I (AdIGF-I) transduction and AdIGF-I/AdIL-1Ra cotransduction of synovial monolayer cultures resulted in increased IGF-I mRNA and ligand expression, and similarly AdIL-1Ra and AdIGF-I/AdIL-1Ra-transduced cultures expressed high levels of IL-1Ra. Northern analysis confirmed a single mRNA transcript of the appropriate size for both IGF-I and IL-1Ra transgene expression. Synovial cell monolayer and cartilage explant coculture experiments were used to examine the effects of IGF-I and IL-1Ra protein expressed by transduced synoviocytes on normal and IL-1-depleted cartilage. Transduced monolayer cultures produced peak medium IGF-I content of 114±20.2 ng/ml and IL-1Ra levels of 241.8±10.5 ng/ml at 48 h after transduction. These IGF-I concentrations were sufficient to produce significantly increased proteoglycan (PG) content of normal cartilage cultured in medium conditioned by AdIGF-I and AdIGF-I/AdIL-1Ra-transduced synoviocytes. Interleukin-1-exposed cartilage was markedly depleted of PG, and this catabolic state was partially reversed in AdIGF-I-transduced cultures and fully reversed by AdIGF-I/AdIL-1Ra-transduced synovial cocultures. These data indicate that cultured synoviocytes are readily cotransduced by two recombinant adenoviral vectors containing transgenes active in restoring joint health. The AdIL-1Ra and AdIGF-I transgenes were abundantly expressed and the secreted products achieved therapeutic concentrations by day 2. The resulting increase in matrix biosynthesis returned cartilage PG content to normal levels. These data suggest that there may be significant value in cotransduction of synovial membrane to attenuate cartilage malacia associated with synovitis, injury, or early arthritis.

Collaboration


Dive into the S. C. Ghivizzani's collaboration.

Top Co-Authors

Avatar

Paul D. Robbins

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Kang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Thomas Oligino

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Bosch

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher Niyibizi

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge