S. C. Sinha
Auburn University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. C. Sinha.
Nonlinear Dynamics | 1995
R. Pandiyan; S. C. Sinha
In this study a new procedure for analysis of nonlinear dynamical systems with periodically varying parameters under critical conditions is presented through an application of the Liapunov-Floquet (L-F) transformation. The L-F transformation is obtained by computing the state transition matrix associated with the linear part of the problem. The elements of the state transition matrix are expressed in terms of Chebyshev polynomials in timet which is suitable for algebraic manipulations. Application of Floquet theory and the eigen-analysis of the state transition matrix at the end of one principal period provides the L-F transformation matrix in terms of the Chebyshev polynomials. Since this is a periodic matrix, the L-F transformation matrix has a Fourier representation. It is well known that such a transformation converts a linear periodic system into a linear time-invariant one. When applied to quasi-linear equations with periodic coefficients, a dynamically similar system is obtained whose linear part is time-invariant and the nonlinear part consists of coefficients which are periodic. Due to this property of the L-F transformation, a periodic orbit in original coordinates will have a fixed point representation in the transformed coordinates. In this study, the bifurcation analysis of the transformed equations, obtained after the application of the L-F transformation, is conducted by employingtime-dependent center manifold reduction andtime-dependent normal form theory. The above procedures are analogous to existing methods that are employed in the study of bifurcations of autonomous systems. For the two physical examples considered, the three generic codimension one bifurcations namely, Hopf, flip and fold bifurcations are analyzed. In the first example, the primary bifurcations of a parametrically excited single degree of freedom pendulum is studied. As a second example, a double inverted pendulum subjected to a periodic loading which undergoes Hopf or flip bifurcation is analyzed. The methodology is semi-analytic in nature and provides quantitative measure of stability when compared to point mappings method. Furthermore, the technique is applicable also to those systems where the periodic term of the linear part does not contain a small parameter which is certainly not the case with perturbation or averaging methods. The conclusions of the study are substantiated by numerical simulations. It is believed that analysis of this nature has been reported for the first time for this class of systems.
Nonlinear Dynamics | 1998
E. A. Butcher; S. C. Sinha
A new technique is presented for symbolic computation of local stability boundaries and bifurcation surfaces for nonlinear multidimensional time-periodic dynamical systems as an explicit function of the system parameters. This is made possible by the recent development of a symbolic computational algorithm for approximating the parameter-dependent fundamental solution matrix of linear time-periodic systems. By evaluating this matrix at the end of the principal period, the parameter-dependent Floquet Transition Matrix (FTM), or the linear part of the Poincaré map, is obtained. The subsequent use of well-known criteria for the local stability and bifurcation conditions of equilibria and periodic solutions enables one to obtain the equations for the bifurcation surfaces in the parameter space as polynomials of the system parameters. Further, the method may be used in conjunction with a series expansion to obtain perturbation-like expressions for the bifurcation boundaries. Because this method is not based on expansion in terms of a small parameter, it can be successfully applied to periodic systems whose internal excitation is strong. Also, the proposed method appears to be more efficient in terms of cpu time than the truncated point mapping method. Two illustrative example problems, viz., a parametrically excited simple pendulum and a double inverted pendulum subjected to a periodic follower force, are included.
Nonlinear Dynamics | 1998
S. C. Sinha; E. A. Butcher; Alexandra Dávid
In this study dynamically equivalent time-invariant forms are obtained for linear and non-linear systems with periodically varying coefficients via Lyapunov–Floquet (L–F) transformation. These forms are equivalent in the sense that the local stability and bifurcation characteristics are identical for both systems in the entire parameter space. It is well known that the L–F transformation converts a linear periodic first order system into a time-invariant one. In the first part of this study a set of linear second order periodic equations is converted into an equivalent set of time-independent second order equations through a sequence of linear transformations. Then the transformations are applied to a time-periodic quadratic Hamiltonian to obtain its equivalent time-invariant form. In the second part, time-invariant forms of nonlinear equations are studied. The application of L–F transformation to a quasi-linear periodic equation converts the linear part to a time-invariant form and leaves the non-linear part with time-periodic coefficients. Dynamically equivalent time-invariant forms are obtained via time-periodic center manifold reduction and time-dependent normal form theory. Such forms are constructed for general hyperbolic systems and for some simple critical cases, including that of one zero eigenvalue and a purely imaginary pair. As a physical example of these techniques, a single and a double inverted pendulum subjected to periodic parametric excitation are considered. The results thus obtained are verified by numerical simulation.
Mathematical Problems in Engineering | 1996
S. C. Sinha; Eric A. Butcher
Chebyshev polynomials are utilized to obtain solutions of a set of pth order linear differential equations with periodic coefficients. For this purpose, the operational matrix of differentiation associated with the shifted Chebyshev polynomials of the first kind is derived. Utilizing the properties of this matrix, the solution of a system of differential equations can be found by solving a set of linear algebraic equations without constructing the equivalent integral equations. The Floquet Transition Matrix (FTM) can then be computed and its eigenvalues (Floquet multipliers) subsequently analyzed for stability. Two straightforward methods, the ‘differential state space formulation’ and the ‘differential direct formulation’, are presented and the results are compared with those obtained from other available techniques. The well-known Mathieu equation and a higher order system are used as illustrative examples.
Nonlinear Dynamics | 2005
S. C. Sinha; Sangram Redkar; Venkatesh Deshmukh; Eric A. Butcher
The basic problem of order reduction of nonlinear systems with time periodic coefficients is considered in state space and in direct second order (structural) form. In state space order reduction methods, the equations of motion are expressed as a set of first order equations and transformed using the Lyapunov–Floquet (L–F) transformation such that the linear parts of new set of equations are time invariant. At this stage, four order reduction methodologies, namely linear, nonlinear projection via singular perturbation, post-processing approach and invariant manifold technique, are suggested. The invariant manifold technique yields a unique ‘reducibility condition’ that provides the conditions under which an accurate nonlinear order reduction is possible. Unlike perturbation or averaging type approaches, the parametric excitation term is not assumed to be small. An alternate approach of deriving reduced order models in direct second order form is also presented. Here the system is converted into an equivalent second order nonlinear system with time invariant linear system matrices and periodically modulated nonlinearities via the L–F and other canonical transformations. Then a master-slave separation of degrees of freedom is used and a nonlinear relation between the slave coordinates and the master coordinates is constructed. This method yields the same ‘reducibility conditions’ obtained by invariant manifold approach in state space. Some examples are given to show potential applications to real problems using above mentioned methodologies. Order reduction possibilities and results for various cases including ‘parametric’, ‘internal’, ‘true internal’ and ‘true combination resonances’ are discussed. A generalization of these ideas to periodic-quasiperiodic systems is included and demonstrated by means of an example.
Nonlinear Dynamics | 2000
Eric A. Butcher; S. C. Sinha
The structure of time-dependent resonances arising in themethod of time-dependent normal forms (TDNF) for one andtwo-degrees-of-freedom nonlinear systems with time-periodic coefficientsis investigated. For this purpose, the Liapunov–Floquet (L–F)transformation is employed to transform the periodic variationalequations into an equivalent form in which the linear system matrix istime-invariant. Both quadratic and cubic nonlinearities are investigatedand the associated normal forms are presented. Also, higher-orderresonances for the single-degree-of-freedom case are discussed. It isdemonstrated that resonances occur when the values of the Floquet multipliers result in MT-periodic (M = 1, 2,...) solutions. The discussion is limited to the Hamiltonian case (which encompasses allpossible resonances for one-degree-of-freedom). Furthermore, it is alsoshown how a recent symbolic algorithm for computing stability andbifurcation boundaries for time-periodic systems may also be employed tocompute the time-dependent resonance sets of zero measure in theparameter space. Unlike classical asymptotic techniques, this method isfree from any small parameter restriction on the time-periodic term inthe computation of the resonance sets. Two illustrative examples (oneand two-degrees-of-freedom) are included.
Journal of Dynamic Systems Measurement and Control-transactions of The Asme | 2003
Alexandra Dávid; S. C. Sinha
In this study, a method for the nonlinear bifurcation control of systems with periodic coefficients is presented. The aim of bifurcation control is to stabilize post bifurcation limit sets or modify other nonlinear characteristics such as stability, amplitude or rate of growth by employing purely nonlinear feedback controllers. The method is based on an application of the Lyapunov-Floquet transformation that converts periodic systems into equivalent forms with time-invariant linear parts. Then, through applications of time-periodic center manifold reduction and time-dependent normal form theory completely time-invariant nonlinear equations are obtained for codimension one bifurcations. The appropriate control gains are chosen in the time-invariant domain and transformed back to the original variables. The control strategy is illustrated through the examples of a parametrically excited simple pendulum undergoing symmetry-breaking bifurcation and a double inverted pendulum subjected to a periodic load in the case of a secondary Hopf bifurcation.
Philosophical Transactions of the Royal Society A | 2006
S. C. Sinha; Alexandra Dávid
In this study, some techniques for the control of chaotic nonlinear systems with periodic coefficients are presented. First, chaos is eliminated from a given range of the system parameters by driving the system to a desired periodic orbit or to a fixed point using a full-state feedback. One has to deal with the same mathematical problem in the event when an autonomous system exhibiting chaos is desired to be driven to a periodic orbit. This is achieved by employing either a linear or a nonlinear control technique. In the linear method, a linear full-state feedback controller is designed by symbolic computation. The nonlinear technique is based on the idea of feedback linearization. A set of coordinate transformation is introduced, which leads to an equivalent linear system that can be controlled by known methods. Our second idea is to delay the onset of chaos beyond a given parameter range by a purely nonlinear control strategy that employs local bifurcation analysis of time-periodic systems. In this method, nonlinear properties of post-bifurcation dynamics, such as stability or rate of growth of a limit set, are modified by a nonlinear state feedback control. The control strategies are illustrated through examples. All methods are general in the sense that they can be applied to systems with no restrictions on the size of the periodic terms.
ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference | 2003
S. C. Sinha; Sangram Redkar; Eric A. Butcher; Venkatesh Deshmukh
The basic problem of order reduction of linear and nonlinear systems with time periodic coefficients is considered. First, the equations of motion are transformed using the Lyapunov-Floquet transformation such that the linear parts of new set of equations are time invariant. At this stage, the linear order reduction technique can be applied in a straightforward manner. A nonlinear order reduction methodology is also suggested through a generalization of the invariant manifold technique via Time Periodic Center Manifold Theory. A ‘reducibility condition’ is derived to provide conditions under which a nonlinear order reduction is possible. Unlike perturbation or averaging type approaches, the parametric excitation term is not assumed to be small. An example consisting of two parametrically excited coupled pendulums is given to show applications to real problems. Order reduction possibilities and results for various cases including ‘parametric’, ‘internal’, ‘true internal’ and ‘combination’ resonances are discussed.Copyright
Nonlinear Dynamics | 2000
Alain Berlioz; Régis Dufour; S. C. Sinha
Experimental and numerical investigations are carried out on anautoparametric system consisting of a composite pendulum attached to aharmonically base excited mass-spring subsystem. The dynamic behavior ofsuch a mechanical system is governed by a set of coupled nonlinearequations with periodic parameters. Particular attention is paid to thedynamic behavior of the pendulum. The periodic doubling bifurcation ofthe pendulum is determined from the semi-trivial solution of thelinearized equations using two methods: a trigonometric approximation ofthe solution and a symbolic computation of the Floquet transition matrixbased on Chebyshev polynominal expansions. The set of nonlineardifferential equations is also integrated with respect to time using afinite difference scheme and the motion of the pendulum is analyzed viaphase-plane portraits and Poincaré maps. The predicted resultsare experimentally validated through an experimental set-up equippedwith an opto-electronic set sensor that is used to measure the angulardisplacement of the pendulum. Period doubling and chaotic motions areobserved.