S. Carrigan
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Carrigan.
Scopus | 2008
Yves A. Gallant; S. Carrigan; A. Djannati-Ataï; S. Funk; J. A. Hinton; S. Hoppe; O. C. de Jager; B. Khélifi; Nu. Komin; K. Kosack; A. Lemière; C. Masterson
Recent advances in very‐high‐energy (VHE) gamma‐ray astronomy have opened a new observational window on the physics of pulsars. The high sensitivity of current imaging atmospheric Cherenkov telescopes, and in particular of the H.E.S.S. array, has already led to the discovery of about a dozen VHE‐emitting pulsar wind nebulae (PWNe) and PWN candidates. These include the plerions in the composite supernova remnants MSH 15–52, G21.5–0.9, Kes 75, and Vela, two sources in the Kookaburra, and the nebula of PSR B1823–13. This VHE emission is generally interpreted as inverse Compton emission from the relativistic electrons and positrons accelerated by the pulsar and its wind; as such, it can yield a more direct spatial and spectral view of the accelerated particles than can be inferred from observations of their synchrotron emission. The VHE‐emitting PWNe detected by the H.E.S.S. telescopes are reviewed and the implications for pulsar physics discussed.
arXiv: High Energy Astrophysical Phenomena | 2011
H. Gast; Francois Brun; S. Carrigan; R. C. G. Chaves; C. Deil; Arache Djannati-Atai; Y. A. Gallant; V. Marandon; M. de Naurois; R. de los Reyes
The High Energy Stereoscopic System (H.E.S.S.) is an array of four imaging atmospheric-Cherenkov telescopes located in Namibia and designed to detect extensive air showers initiated by gamma-rays in the very-high-energy domain. It is an ideal instrument for surveying the Galactic plane in search of new sources, thanks to its location in the Southern Hemisphere, its excellent sensitivity, and its large field-of-view. The efforts of the H.E.S.S. Galactic Plane Survey, the first comprehensive survey of the inner Galaxy at TeV energies, have contributed to the discovery of an unexpectedly large and diverse population of over 60 sources of VHE gamma rays within its current range of l=250 to 65 degrees in longitude and |b|<=3.5 degrees in latitude. The population of VHE gamma-ray emitters is dominated by the pulsar wind nebula and supernova remnant source classes, although nearly a third remain unidentified or confused. The sensitivity of H.E.S.S. to sources in the inner Galaxy has improved significantly over the past two years, from continued survey observations, dedicated follow-up observations of interesting source candidates, and from the development of advanced methods for discrimination of gamma-ray-induced showers from the dominant background of hadron-induced showers. The latest maps of the Galaxy at TeV energies will be presented, and a few remarkable new sources will be highlighted.
Archive | 2011
A. A. Abdo; M. Ackermann; M. Ajello; L. Baldini; J. Ballet; G. Barbiellini; D. Bastieri; K. Bechtol; R. Bellazzini; B. Berenji; R. D. Blandford; E. D. Bloom; E. Bonamente; A. W. Borgland; A. Bouvier; J. Bregeon; A. Brez; M. Brigida; P. Bruel; R. Buehler; S. Buson; G. A. Caliandro; R. A. Cameron; A. Cannon; Patrizia A. Caraveo; S. Carrigan; J. M. Casandjian; E. Cavazzuti; C. Cecchi; O. Celik
We report on the gamma-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) gamma-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index Gamma = 1.78 +/- 0.02 and average photon flux F(>0.3 GeV) = (7.23 +/- 0.16) x 10(-8) ph cm(-2) s(-1). Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor similar to 3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in gamma-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.We report on the γ -ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) γ -ray spectrum above 0.3 GeV can be well described by a power-law function with photon index Γ = 1.78± 0.02 and average photon flux F (>0.3 GeV) = (7.23 ± 0.16) × 10−8 ph cm−2 s−1. Over this time period, the FermiLAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor ∼3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in γ -rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.
arXiv: High Energy Astrophysical Phenomena | 2011
A. Bochow; S. Carrigan; H. Gast; V. Marandon; M. Renaud; W. Hofmann
Very-high-energy (VHE, E > 100 GeV) gamma radiation has already been detected from several supernova remnants (SNRs). These objects, which are well-studied in radio, optical and X-ray wavelengths, constitute one of the most intriguing source classes in VHE astronomy. H.E.S.S., an array of four imaging atmospheric Cherenkov telescopes in Namibia, has recorded an extensive dataset of VHE gamma-ray observations covering the central region of the Milky Way, both from pointed observations as well as from the Galactic Plane Survey conducted in the inner region of the Galaxy. From radio observations, several hundred SNRs are known in the Milky Way, but until now only few of them have been identified as VHE gamma-ray emitters. Using the H.E.S.S. dataset and a large ensemble of radio SNRs localized in the inner region of the Galaxy, the standard framework that links the origin of cosmic rays to the gamma-ray visibility of SNRs can now be tested. Here we present the ensemble of investigated SNRs and discuss constraints on the parameter space used within a theoretical model of hadronic VHE gamma-ray production.
arXiv: High Energy Astrophysical Phenomena | 2012
A. Abramowski; F. Acero; F. Aharonian; A. G. Akhperjanian; G. Anton; S. Balenderan; A. Balzer; A. Barnacka; Y. Becherini; J. Becker; K. Bernlöhr; E. Birsin; J. Biteau; A. Bochow; C. Boisson; J. Bolmont; P. Bordas; J. Brucker; F. Brun; P. Brun; T. Bulik; S. Carrigan; S. Casanova; M. Cerruti; P. M. Chadwick; A. Charbonnier; R. C. G. Chaves; A. Cheesebrough; G. Cologna; J. Conrad
We present the significant detection of the first extragalactic pulsar wind nebula (PWN) detected in gamma rays, N157B, located in the large Magellanic Cloud (LMC). Pulsars with high spin-down luminosity are found to power energised nebulae that emit gamma rays up to energies of several tens of TeV. N157B is associated with PSRJ0537-6910, which is the pulsar with the highest known spin-down luminosity. The High Energy Stereoscopic System telescope array observed this nebula on a yearly basis from 2004 to 2009 with a dead-time corrected exposure of 46 h. The gamma-ray spectrum between 600 GeV and 12 TeV is well-described by a pure power-law with a photon index of 2.8 \pm 0.2(stat) \pm 0.3(syst) and a normalisation at 1 TeV of (8.2 \pm 0.8(stat) \pm 2.5(syst)) \times 10^-13 cm^-2s^-1TeV^-1. A leptonic multi-wavelength model shows that an energy of about 4 \times 10^49erg is stored in electrons and positrons. The apparent efficiency, which is the ratio of the TeV gamma-ray luminosity to the pulsars spindown luminosity, 0.08% \pm 0.01%, is comparable to those of PWNe found in the Milky Way. The detection of a PWN at such a large distance is possible due to the pulsars favourable spin-down luminosity and a bright infrared photon-field serving as an inverse-Compton-scattering target for accelerated leptons. By applying a calorimetric technique to these observations, the pulsars birth period is estimated to be shorter than 10 ms.
arXiv: High Energy Astrophysical Phenomena | 2013
S. Carrigan; Francois Brun; H. Gast; C. Deli; V. Marandon; M. Renaud; A. Donath; R. C. G. Chaves
arXiv: High Energy Astrophysical Phenomena | 2011
Francois Brun; Mathieu de Naurois; W. Hofmann; S. Carrigan; Arache Djannati-Atai; S. Ohm
arXiv: High Energy Astrophysical Phenomena | 2013
S. Carrigan; Francois Brun; R. C. G. Chaves; C. Deil; H. Gast; V. Marandon
arXiv: Astrophysics | 2009
S. Carrigan; J. A. Hinton; W. Hofmann
Astronomy and Astrophysics | 2007
J. A. Hinton; S. Funk; S. Carrigan; Y.A. Gallant; O. C. de Jager; K. Kosack; Anne Lemiere; G. Pühlhofer