S. Chris Reberg-Horton
North Carolina State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Chris Reberg-Horton.
Journal of Chemical Ecology | 2005
S. Chris Reberg-Horton; James D. Burton; David A. Danehower; Guoying Ma; David W. Monks; J. Paul Murphy; Noah N. Ranells; John D. Williamson; Nancy G. Creamer
Published studies focused on characterizing the allelopathy-based weed suppression by rye cover crop mulch have provided varying and inconsistent estimates of weed suppression. Studies were initiated to examine several factors that could influence the weed suppressiveness of rye: kill date, cultivar, and soil fertility. Ten cultivars of rye were planted with four rates of nitrogen fertilization, and tissue from each of these treatment combinations was harvested three times during the growing season. Concentrations of a known rye allelochemical DIBOA (2,4-dihydroxy-1,4-(2H)benzoxazine-3-one) were quantified from the harvested rye tissue using high performance liquid chromatography (HPLC). Phytotoxicity observed from aqueous extracts of the harvested rye tissue correlated with the levels of DIBOA recovered in harvested tissue. The amount of DIBOA in rye tissue varied depending on harvest date and rye cultivar, but was generally lower with all cultivars when rye was harvested later in the season. However, the late maturing variety ‘Wheeler’ retained greater concentrations of DIBOA in comparison to other rye cultivars when harvested later in the season. The decline in DIBOA concentrations as rye matures, and the fact that many rye cultivars mature at different rates may help explain why estimates of weed suppression from allelopathic agents in rye have varied so widely in the literature.
Weed Science | 2011
Adam N. Smith; S. Chris Reberg-Horton; George T. Place; Alan D. Meijer; Consuelo Arellano; J. Paul Mueller
Rising demand for organic soybeans and high price premiums for organic products have stimulated producer interest in organic soybean production. However, organic soybean producers and those making the transition to organic production cite weed management as their main limitation. Current weed management practices heavily rely on cultivation. Repeated cultivation is expensive and has negative consequences on soil health. Research is needed to improve organic reduced tillage production. Rye cover crop mulches were evaluated for weed suppression abilities and effects on soybean yield. Experiments were planted in 2008 and 2009 at three sites. Rye was planted in the fall of each year and killed at soybean planting with a roller/crimper or flail mower, creating a thick weed-suppressing mulch with potential allelopathic properties. The mulch was augmented with one of three additional weed control tactics: preemergence (PRE) corn gluten meal (CGM), postemergence (POST) clove oil, or postemergence high-residue cultivation. Roll-crimped and flail-mowed treatments had similar weed suppression abilities at most sites. There were no differences between CGM, clove oil, or cultivation at most sites. Sites with rye biomass above 9,000 kg ha−1 of dry matter provided weed control that precluded soybean yield loss from competition. In Goldsboro 2008, where rye biomass was 10,854 kg ha−1 of dry matter, the soybean yield in the rolled rye treatment was not significantly different from the weed-free treatment, yielding at 2,190 and 2,143 kg ha−1, respectively. Likewise, no difference in soybean yield was found in Plymouth 2008 with a rye biomass of 9,256 kg ha−1 and yields of 2,694 kg ha−1 and 2,809 kg ha−1 in the rolled rye and weed-free treatments, respectively. At low rye biomass levels (4,450 to 6,606 kg ha−1), the rolled rye treatment soybean yield was 628 to 822 kg ha−1 less than the weed-free treatment. High rye biomass levels are critical to the success of this production system. However, high rye biomass was, in some cases, also correlated with soybean lodging severe enough to cause concern with this system. Nomenclature: Clove oil; corn gluten meal; soybean, Glycine max (L.) Merr.; rye, Secale cereale L
Renewable Agriculture and Food Systems | 2012
S. Chris Reberg-Horton; Julie M. Grossman; Ted S. Kornecki; Alan D. Meijer; Andrew J. Price; George T. Place; Theodore M. Webster
Organic systems in the southeastern USA offer unique challenges and solutions to crop production due to regional soil and climate characterized by highly weathered soil types, high precipitation and the capacity to grow cover crops in the winter. Recently, the interest of producers and researchers in high-residue cover crops and conservation tillage systems has increased. Various designs of the roller–crimper to manage cover crops have been invented and demonstrated to growers in the southeastern region of the USA over the past 17 years. The impacts of high-residue cover crop mulches on the agronomic systems in the region are diverse. Legume cover crops assist with meeting N demand from cash crops though they decompose rapidly and are seldom sufficient for N demanding crops such as corn. Cereal cover crop mulches can have the opposite effect by immobilizing N and have a longer impact on soil moisture and weed dynamics. While undesirable for many crops, N immobilization is one possible mechanism for weed suppression in legume cash crops planted into cereal residues. Other cover crop weed suppression mechanisms include physical impedance, light availability, allelopathy and microclimate effects. Regardless of the cause, successful weed control by mulches is highly dependent on having substantial biomass. The southeastern region is capable of producing cover crop biomass in excess of 9000 kg ha −1 , which is sufficient for weed control in many cash crops, although supplementary weed control is sometimes necessary. Long-term data are needed to predict when farmers should add supplementary weed control. More work is also needed on how much additional N is required for the cash crops and how best to deliver that N in a high-residue environment using organic sources.
Weed Science | 2008
Amanda F. Shearin; S. Chris Reberg-Horton; Eric R. Gallandt
Abstract Cover crop systems were investigated in 2004 and 2005 for their effects on the activity-density (a function of movement and density) of a promising group of weed biocontrol organisms, the ground beetles collectively known as carabids, with particular emphasis on a beneficial carabid species Harpalus rufipes DeGeer. Marked H. rufipes released into pea/oat–rye/vetch cover crop plots were more than twice as likely to be recaptured within the same plots as beetles released in nonvegetated fallow plots (18 and 8%, respectively). Marked beetles released into fallow plots were more than twice as likely to leave their plots and be recaptured in pea/oat–rye/vetch plots as vice versa (13 vs. 5%), indicating a clear preference for habitat with vegetative cover. Overall recapture rates were not different between treatments. Unmarked H. rufipes activity-density was also higher in pea/oat–rye/vetch compared to fallow plots. Additionally, five cover crop systems, including the fallow and pea/oat–rye/vetch treatments, and two residue management methods (conventional and zone tillage) were investigated from June to August in 2005 for their effects on H. rufipes activity-density. Corn was planted in 2005 into residues of the five cover crop systems grown in 2004. H. rufipes activity-density was higher in zone and conventionally tilled corn planted in pea/oat–rye/vetch residues and conventionally tilled corn planted in red clover/oat residues than in any other cover crop and residue management combination. Pea/oat–rye/vetch cover crop systems are apparently beneficial for H. rufipes during the cover crop year as well as in subsequent crops planted into this cover crops residues. This system was not the least disturbed system but, based on the number of tillage events, represented a medium level of disturbance among the various systems. Thus, some level of disturbance might be beneficial for H. rufipes, but how and when that soil disturbance occurs requires further research to determine the best means of conserving this species.
Weed Science | 2014
M. Scott Wells; S. Chris Reberg-Horton; Steven B. Mirsky
Abstract A four site-year study was conducted in North Carolina to evaluate the effects of soybean planting timing and row spacing on soil moisture, weed density, soybean lodging, and yield in a cover crop-based no-till organic soybean production system. Soybean planting timing included roll-kill/planting and roll-kill/delayed planting where soybean planting occurred either on the same day or approximately 2 wk later, respectively. Soybean row spacing included 19, 38, and 76 cm, and all treatments included a weedy check and weed-free treatment. Rye biomass production averaged above 10,000 kg ha−1 dry matter, which resulted in good weed control across all sites. Despite having good weed control throughout all treatments, weed coverage was highest in the 76-cm row-space treatment when compared to both the 19-cm and 38-cm row spacing in two of the four site-years. Soybean lodging is a potential consequence of no-till planting of soybeans in high residue mulches, and of the three row spacings, the 19-cm spacing exhibited the greatest incidence of lodging. Row spacing also influenced soybean yield; the 19- and 38-cm row spacing out yielded the 76-cm spacing by 10%. Soil volumetric water content (VWC) was higher in the cereal rye mulch treatments compared to the no rye checks. Furthermore, delaying soybean planting lowered soil water evaporation. However, the increased soil VWC in the rolled-rye treatment did not translate into increased soybean yield. The rolled-rye treatment exhibited significant (P < 0.01) increases in soil VWC when compared to the no-rye treatment at three of the four site-years. These results highlight planting date flexibility and potential risk to lodging that producers face when no-till planting organic soybeans. Nomenclature: Glyphosate; s-metolachlor; imazethapyr; redroot pigweed, Amaranthus retroflexus L.; cereal rye, Secale cereal L.; DM, dry matter.
Communications in Soil Science and Plant Analysis | 2014
Mary Parr; Julie M. Grossman; S. Chris Reberg-Horton; Carrie M. Brinton; Carl R. Crozier
Nitrogen (N) release from roll-killed legume cover crops was determined for hairy vetch (Vicia villosa Roth), crimson clover (Trifolium incarnatum L.), and a hairy vetch + rye (Secale cereale L.) biculture in an organic corn production system in North Carolina, USA. Cover crops were planted at two locations in fall 2008 and 2009, roll-killed in May, and no-till planted with corn (Zea mays L.). Inorganic soil N and mineral N flux were determined using potassium chloride (KCl) extractions and ion-exchange resin (Plant Root Simulator, PRS) probes at 2-week intervals for 12 weeks and compared to fertilized controls of 0 and 168 kg N ha−1. In 2009, greater plant available N under hairy vetch than under either 0 N control or crimson clover was found, with peak soil N occurring between 4 and 6 weeks after roll kill. Available soil N under crimson clover mulches was less than or equal to 0 N, suggesting net immobilization.
Weed Science | 2009
George T. Place; S. Chris Reberg-Horton; Michael G. Burton
Abstract Demand for organic food products has consistently increased for more than 20 yr. The largest obstacle to organic soybean production in the southeastern United States is weed management. Current organic soybean production relies on mechanical weed control, including multiple postplant rotary hoe uses. Although postplant rotary hoe use is effective at the weed germination stage, its efficacy is severely compromised by delays due to weather. Preplant rotary hoeing is also a practice that has been utilized for weed control but the effectiveness of this practice to reduce the need for multiple postplant rotary hoeing for organic soybean production in the southeastern United States has not been investigated. Preplant rotary hoe treatments included a weekly rotary hoeing 4 wk before planting, 2 wk before planting, and none. Postplant rotary hoe treatments consisted of zero, one, two, three, and four postplant rotary hoe uses. Weed control was increased with preplant rotary hoeing at Plymouth in 2006 and 2007 but this effect disappeared with the first postplant rotary hoeing. Multiple postplant rotary hoe uses decreased soybean plant populations, decreased soybean canopy height, lowered soybean pod position, and decreased soybean yield. Plant mapping revealed that the percentage of total nodes and pods below 30 cm was increased by increased frequency of postplant rotary hoe use. Nomenclature: Soybean, Glycine max (L.) Merr.
Weed Science | 2013
Margaret Worthington; S. Chris Reberg-Horton; David L. Jordan; J. Paul Murphy
Abstract Infestations of Italian ryegrass are problematic in both conventional and organic wheat production systems. The development of wheat cultivars with superior competitive ability against Italian ryegrass could play a role in maintaining acceptable yields and suppressing weed populations. Research was conducted in North Carolina to identify indirect methods of selection for Italian ryegrass suppressive ability (hereafter referred to as weed suppressive ability) of winter wheat cultivars that correlate well with Italian ryegrass-to-wheat biomass ratios. Two winter wheat cultivars (Dyna-Gro Baldwin and Dyna-Gro Dominion) and one experimental wheat line (NC05-19684) with differing morphological traits were overseeded with varying densities of Italian ryegrass. Wheat height measured throughout the growing season in weed-free plots was strongly associated with weed suppressive ability, but high wheat tillering capacity had no significant effect on weed suppressive ability in the lines tested in this study. Italian ryegrass seed head density during grain fill was strongly correlated (r = 0.94) with Italian ryegrass-to-wheat biomass ratio, the generally accepted measure of weed suppressive ability. Visual estimates of percent Italian ryegrass biomass relative to the plot with the highest level of Italian ryegrass infestation in each replicate were also strongly correlated with weed suppressive ability at all growth stages, especially during heading (r = 0.87) (Zadoks growth stage [GS] 55). Measurements from nonimaging spectrophotometers and overhead photographs taken from tillering (Zadoks 23 to 25) to early dough development (Zadoks 80) were unreliable estimates of end-of-season Italian ryegrass-to-wheat biomass ratios because they failed to account for wheat cultivar differences in biomass, color, and growth habit. Italian ryegrass seed head density and visual estimates of Italian ryegrass biomass during grain fill are appropriate indirect methods of selection for weed suppressive ability in breeding programs. Nomenclature: Italian ryegrass, Lolium perenne L. ssp. multiflorum (Lam.) Husnot LOLMU; wheat, Triticum aestivum L.
Renewable Agriculture and Food Systems | 2016
M. Scott Wells; Carrie M. Brinton; S. Chris Reberg-Horton
Cover crop mulches have been successful in reducing weed severity in organic soybeans. This study examined six rye cultivars (SRCs) used as cover crops to determine which were most adapted for use with a roller–crimper in the southeastern U.S. To be an effective mulch, a rye cultivar must produce high biomass and reach reproductive growth stage to facilitate mechanical termination via the roller–crimper prior to soybean planting. Rye cultivars were planted at three locations in North Carolina over the 2009 and 2010 growing seasons. Each rye cultivar was mechanically terminated via a roller–crimper implement. Rye cover crops were terminated on two dates and soybeans were immediately no-till planted into the mulch. In 2009, all rye cultivars produced greater than 9000 kg ha −1 rye biomass dry matter (DM) with the exception of Rymin at Plymouth (2009), but in 2010 only the early flowering cultivars produced in excess of 9000 kg ha −1 DM. There were no detectable soybean yield differences between the SRCs and the weed-free checks, and weed control was excellent across all SRCs at both Plymouth and Salisbury (2009). After an unseasonably cold and wet winter in 2010, the late flowering rye cultivars were not fully controlled by the early termination date due to delayed maturation (less than 65% control at 2 WAP) whereas the early flowering cultivars were fully controlled (100% control at 2 WAP). Rye biomass production was below 9000 kg ha −1 DM for the late flowering and dough development rye cultivars. The early-terminated rye plots had greater weed coverage across all SRCs than those from the late termination date ( P
Journal of the Science of Food and Agriculture | 2018
Uttam Saha; R. A. Vann; S. Chris Reberg-Horton; Miguel S. Castillo; Steven B. Mirsky; Rebecca J. McGee; Leticia Sonon
BACKGROUND Winter pea (Pisum sativum L.) grows well in a wide geographic region, both as a forage and cover crop. Understanding the quality constituents of this crop is important for both end uses; however, analysis of quality constituents by conventional wet chemistry methods is laborious, slow and costly. Near infrared reflectance spectroscopy (NIRS) is a precise, accurate, rapid and cheap alternative to using wet chemistry for estimating quality constituents. We developed and validated NIRS calibration models for constituent analysis of this crop. RESULTS Of the 11 constituent models developed, nine constituents including moisture, dry-matter, total-nitrogen, crude protein, acid detergent fiber, neutral detergent fiber, AD-lignin, cellulose and non-fibrous carbohydrate had low standard errors and a high coefficient of determination (R2 = 0.88-0.98; 1 - VR, which is the coefficient of determination during cross-validation = 0.77-0.92) for both calibration and cross-validation, indicating their potential for quantitative predictability. The calibration models for ash (R2 = 0.65; 1 - VR = 0.46) and hemicellulose (R2 = 0.75; 1 - VR = 0.50) also appeared to be adequate for qualitative screening. Predictions of an independent validation set yielded reliable agreement between the NIRS predicted values and the reference values with low standard error of prediction (SEP), low bias, high coefficient of determination (r2 = 0.82-0.95), high ratios of performance to deviation (RPD = SD/SEP; 2.30-3.85) and high ratios of performance to interquartile distance (RPIQ = IQ/SEP; 2.57-7.59) for all 11 constituents. CONCLUSION Precise, accurate and rapid analysis of winter pea for major forage and cover crop quality constituents can be performed at a low cost using the NIRS calibration models developed.