Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Cichon is active.

Publication


Featured researches published by S. Cichon.


Molecular Psychiatry | 2004

Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder.

Johannes Schumacher; R Abon Jamra; Jan Freudenberg; Tim Becker; Stephanie Ohlraun; Andreas C.J. Otte; Monja Tullius; Svetlana Kovalenko; A. van Bogaert; W. Maier; Marcella Rietschel; Peter Propping; Markus M. Nöthen; S. Cichon

A recent study has suggested that the brain-expressed genes for G72 and D-amino-acid oxidase (DAAO) exert an influence on susceptibility to schizophrenia. Our aim was to replicate this finding in German schizophrenic patients and to assess whether G72 and DAAO might also contribute to the development of bipolar affective disorder. We genotyped seven single-nucleotide polymorphisms (SNPs) in the G72 gene and three in the DAAO gene in 599 patients (299 schizophrenic, 300 bipolar) and 300 controls. At G72, individual SNPs and a four-marker haplotype were associated with schizophrenia. The most significant SNP as well as the haplotype were also associated with bipolar affective disorder (BPAD). DAAO was associated with schizophrenia, but not with BPAD. The association of variation at G72 with schizophrenia as well as BPAD provides molecular support for the hypothesis that these two major psychiatric disorders share some of their etiologic background.


American Journal of Human Genetics | 2003

The DTNBP1 (Dysbindin) Gene Contributes to Schizophrenia, Depending on Family History of the Disease

Ann Van Den Bogaert; Johannes Schumacher; Thomas G. Schulze; Andreas C.J. Otte; Stephanie Ohlraun; Svetlana Kovalenko; Tim Becker; Jan Freudenberg; Erik G. Jönsson; Marja Mattila-Evenden; Göran Sedvall; Piotr M. Czerski; Pawel Kapelski; Joanna Hauser; Wolfgang Maier; Marcella Rietschel; Peter Propping; Markus M. Nöthen; S. Cichon

We have investigated the gene for dystrobrevin-binding protein 1 (DTNBP1), or dysbindin, which has been strongly suggested as a positional candidate gene for schizophrenia, in three samples of subjects with schizophrenia and unaffected control subjects of German (418 cases, 285 controls), Polish (294 cases, 113 controls), and Swedish (142 cases, 272 controls) descent. We analyzed five single-nucleotide polymorphisms (P1635, P1325, P1320, P1757, and P1578) and identified significant evidence of association in the Swedish sample but not in those from Germany or Poland. The results in the Swedish sample became even more significant after a separate analysis of those cases with a positive family history of schizophrenia, in whom the five-marker haplotype A-C-A-T-T showed a P value of.00009 (3.1% in controls, 17.8% in cases; OR 6.75; P=.00153 after Bonferroni correction). Our results suggest that genetic variation in the dysbindin gene is particularly involved in the development of schizophrenia in cases with a familial loading of the disease. This would also explain the difficulty of replicating this association in consecutively ascertained case-control samples, which usually comprise only a small proportion of subjects with a family history of disease.


Molecular Psychiatry | 2009

A genome-wide association study in 574 schizophrenia trios using DNA pooling

George Kirov; Irina Zaharieva; Lyudmila Georgieva; Moskvina; Ivan Nikolov; S. Cichon; Axel M. Hillmer; Draga Toncheva; Michael John Owen; Michael Conlon O'Donovan

The cost of genome-wide association (GWA) studies can be prohibitively high when large samples are genotyped. We conducted a GWA study on schizophrenia (SZ) and to reduce the cost, we used DNA pooling. We used a parent–offspring trios design to avoid the potential problems of population stratification. We constructed pools from 605 unaffected controls, 574 SZ patients and a third pool from all the parents of the patients. We hybridized each pool eight times on Illumina HumanHap550 arrays. We estimated the allele frequencies of each pool from the averaged intensities of the arrays. The significance level of results in the trios sample was estimated on the basis of the allele frequencies in cases and non-transmitted pseudocontrols, taking into account the technical variability of the data. We selected the highest ranked SNPs for individual genotyping, after excluding poorly performing SNPs and those that showed a trend in the opposite direction in the control pool. We genotyped 63 SNPs in 574 trios and analysed the results with the transmission disequilibrium test. Forty of those were significant at P<0.05, with the best result at P=1.2 × 10−6 for rs11064768. This SNP is within the gene CCDC60, a coiled-coil domain gene. The third best SNP (P=0.00016) is rs893703, within RBP1, a candidate gene for schizophrenia.


Nature Genetics | 2003

Hypotrichosis simplex of the scalp is associated with nonsense mutations in CDSN encoding corneodesmosin

Etgar Levy-Nissenbaum; Regina C. Betz; Moshe Frydman; Michel Simon; Hadas Lahat; Tengiz Bakhan; Boleslaw Goldman; Anette Bygum; Monika Pierick; Axel M. Hillmer; Nathalie Jonca; Jaime Toribio; Roland Kruse; Georg Dewald; S. Cichon; Christian Kubisch; Marina Guerrin; Guy Serre; Markus M. Nöthen; Elon Pras

We have identified nonsense mutations in the gene CDSN (encoding corneodesmosin) in three families suffering from hypotrichosis simplex of the scalp (HSS; OMIM 146520). CDSN, a glycoprotein expressed in the epidermis and inner root sheath (IRS) of hair follicles, is a keratinocyte adhesion molecule. Truncated CDSN aggregates were detected in the superficial dermis and at the periphery of hair follicles. Our findings suggest that CDSN is important in normal scalp hair physiology.


Molecular Psychiatry | 1999

Evaluation of linkage of bipolar affective disorder to chromosome 18 in a sample of 57 German families.

Markus M. Nöthen; S. Cichon; H. Rohleder; Susanne Hemmer; Ernst Franzek; Jürgen Fritze; Margot Albus; Margitta Borrmann-Hassenbach; Roland Kreiner; Bettina Weigelt; Jürgen Minges; Dirk Lichtermann; W. Maier; Nicholas John Craddock; Rolf Fimmers; Tobias Höller; Max P. Baur; M. Rietschel; Peter Propping

Previously reported linkage of bipolar affective disorder to DNA markers on chromosome 18 was reexamined in a large sample of German bipolar families. Twenty-three short tandem repeat markers were investigated in 57 families containing 103 individuals with bipolar I disorder (BPI), 26 with bipolar II disorder (BPII), nine with schizoaffective disorder of the bipolar type (SA/BP), and 38 individuals with recurrent unipolar depression (UPR). Evidence for linkage was tested with parametric and non-parametric methods under two definitions of the affected phenotype. Analysis of all 57 families revealed no robust evidence for linkage. Following previous reports we performed separate analyses after subdividing the families with respect to the sex of the transmitting parent. Fourteen families were classified as paternal and 12 families as maternal. In 31 families the parental lineage of transmission of the disease could not be determined (‘either’ families). Evidence for linkage was obtained for chromosomal region 18p11.2 in the paternal families and for 18q22–23 in the ‘either’ families. The findings on 18p11.2 and 18q22–23 support prior evidence for susceptibility loci in these regions. The parent-of-origin effect on 18p11.2 is confirmed in our sample. The delineation of characteristics of ‘either’ families requires further study.


Molecular Psychiatry | 2011

Effects of a genome-wide supported psychosis risk variant on neural activation during a theory-of-mind task.

Henrik Walter; Knut Schnell; Susanne Erk; Claudia Arnold; Peter Kirsch; Christine Esslinger; Daniela Mier; Mike M. Schmitgen; M. Rietschel; Stephanie H. Witt; Markus M. Nöthen; S. Cichon; Andreas Meyer-Lindenberg

Schizophrenia is associated with marked deficits in theory of mind (ToM), a higher-order form of social cognition representing the thoughts, emotions and intentions of others. Altered brain activation in the medial prefrontal cortex and temporo-parietal cortex during ToM tasks has been found in patients with schizophrenia, but the relevance of these neuroimaging findings for the heritable risk for schizophrenia is unclear. We tested the hypothesis that activation of the ToM network is altered in healthy risk allele carriers of the single-nucleotide polymorphism rs1344706 in the gene ZNF804A, a recently discovered risk variant for psychosis with genome-wide support. In all, 109 healthy volunteers of both sexes in Hardy–Weinberg equilibrium for rs1344706 were investigated with functional magnetic resonance imaging during a ToM task. As hypothesised, risk carriers exhibited a significant (P<0.05 false discovery rate, corrected for multiple comparisons) risk allele dose effect on neural activity in the medial prefrontal cortex and left temporo-parietal cortex. Moreover, the same effect was found in the left inferior parietal cortex and left inferior frontal cortex, which are part of the human analogue of the mirror neuron system. In addition, in an exploratory analysis (P<0.001 uncorrected), we found evidence for aberrant functional connectivity between the frontal and temporo-parietal regions in risk allele carriers. To conclude, we show that a dysfunction of the ToM network is associated with a genome-wide supported genetic risk variant for schizophrenia and has promise as an intermediate phenotype that can be mined for the development of biological interventions targeted to social dysfunction in psychiatry.


Molecular Psychiatry | 2011

TMEM132D, a new candidate for anxiety phenotypes: evidence from human and mouse studies

Ludwig Czibere; D. Roeske; Susanne Lucae; P. G. Unschuld; Stephan Ripke; Michael Specht; Martin A. Kohli; Stefan Kloiber; Marcus Ising; Angela Heck; Hildegard Pfister; P. Zimmermann; Roselind Lieb; Benno Pütz; Manfred Uhr; Peter Weber; Jan M. Deussing; Mariya Gonik; Mirjam Bunck; Melanie S. Kessler; Elisabeth Frank; Christa Hohoff; Katharina Domschke; Petra Krakowitzky; W. Maier; Borwin Bandelow; Christian Jacob; J. Deckert; Stefan Schreiber; Jana Strohmaier

The lifetime prevalence of panic disorder (PD) is up to 4% worldwide and there is substantial evidence that genetic factors contribute to the development of PD. Single-nucleotide polymorphisms (SNPs) in TMEM132D, identified in a whole-genome association study (GWAS), were found to be associated with PD in three independent samples, with a two-SNP haplotype associated in each of three samples in the same direction, and with a P-value of 1.2e−7 in the combined sample (909 cases and 915 controls). Independent SNPs in this gene were also associated with the severity of anxiety symptoms in patients affected by PD or panic attacks as well as in patients suffering from unipolar depression. Risk genotypes for PD were associated with higher TMEM132D mRNA expression levels in the frontal cortex. In parallel, using a mouse model of extremes in trait anxiety, we could further show that anxiety-related behavior was positively correlated with Tmem132d mRNA expression in the anterior cingulate cortex, central to the processing of anxiety/fear-related stimuli, and that in this animal model a Tmem132d SNP is associated with anxiety-related behavior in an F2 panel. TMEM132D may thus be an important new candidate gene for PD as well as more generally for anxiety-related behavior.


Molecular Psychiatry | 2014

Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci

Anders D. Børglum; Ditte Demontis; Jakob Grove; J Pallesen; Mads V. Hollegaard; Carsten Bøcker Pedersen; A Hedemand; Manuel Mattheisen; A.G. Uitterlinden; Mette Nyegaard; T F Ørntoft; Carsten Wiuf; Michael Didriksen; Merete Nordentoft; Markus M. Nöthen; Marcella Rietschel; Roel A. Ophoff; S. Cichon; Robert H. Yolken; David M. Hougaard; Peter B. Mortensen; Ole Mors

Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch (1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish samples were rs4757144 in ARNTL (P=3.78 × 10−6) and rs8057927 in CDH13 (P=1.39 × 10−5). Both genes have previously been linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and German-Dutch samples, was rs12922317 in RUNDC2A (P=9.04 × 10−7). A region-based analysis summarizing independent signals in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P=7.0 × 10−7). This signal was replicated in the follow-up analysis (P=2.3 × 10−2). Significant interaction with maternal CMV infection was found for rs7902091 (PSNP × CMV=7.3 × 10−7) in CTNNA3, a gene not previously implicated in schizophrenia, stressing the importance of including environmental factors in genetic studies.


Molecular Psychiatry | 2001

Association study of the low-activity allele of catechol-O-methyltransferase and alcoholism using a family-based approach

Ti Wang; Petra Franke; Helge Neidt; S. Cichon; Michael Knapp; Dirk Lichtermann; W. Maier; Peter Propping; Markus M. Nöthen

Catechol-O-methyltransferase (COMT) is a major component of the metabolic pathways of neurotransmitters such as dopamine, adrenaline, and noradrenaline. The activity of COMT is known to vary within the population; it exists in common high- and low-activity forms that are determined by a Val → Met polymorphism at amino acid position 108/158 (in soluble or membrane-bound COMT). Recently, the low-activity allele was reported to contribute to the development of late-onset alcoholism in men.1 The present study extends this study by utilizing a family-based association approach, and by including individuals with early-onset alcoholism. Although no significant transmission disequilibrium was found in the overall sample of 70 parent/offspring trios (TDT = 1.43, P = 0.23), we observed a preferential transmission of the low-activity allele to patients with an early onset of disease (n = 32, TDT = 4.83, P = 0.028). Our results provide further evidence for an involvement of the COMT low-activity allele in the development of alcoholism and demonstrate the need for further studies in large samples of alcoholic patients.


Pharmacogenomics Journal | 2011

Involvement of the atrial natriuretic peptide transcription factor GATA4 in alcohol dependence, relapse risk and treatment response to acamprosate

Falk Kiefer; Stephanie H. Witt; Josef Frank; Anne Richter; Tagrid Leménager; Markus M. Nöthen; S. Cichon; A Batra; M Berner; Norbert Wodarz; Ulrich S. Zimmermann; Rainer Spanagel; K. Wiedemann; Michael N. Smolka; A. Heinz; M. Rietschel; Karl Mann

In alcoholism, both relapse to alcohol drinking and treatment response are suggested to be genetically modulated. This study set out to determine whether the top 15 single nucleotide polymorphisms (SNPs) of a recent genome-wide association (GWA) and follow-up study of alcohol dependence are associated with relapse behavior and pharmacological treatment response in 374 alcohol-dependent subjects who underwent a randomized, double-blind, placebo-controlled trial with acamprosate, naltrexone or placebo. The single nucleotide polymorphism, rs13273672, an intronic SNP in the gene for GATA-binding protein 4 (GATA4), was associated with relapse within the 90-day medical treatment period (P<0.01). Subsequent pharmacogenetic analyses showed that this association was mainly based on patients treated with acamprosate (P<0.01). In line with the observation that natriuretic peptide promoters are modulated by GATA4, a significant gene dose effect on the variance of atrial natriuretic peptide (ANP) plasma concentration in the different GATA4 genotypes (P<0.01) was found. Hence, genetic variations in GATA4 might influence relapse and treatment response to acamprosate in alcohol-dependent patients via modulation of ANP plasma levels. These results could help to identify those alcohol-dependent patients who may be at an increased risk of relapse and who may better respond to treatment with acamprosate.

Collaboration


Dive into the S. Cichon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes Schumacher

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge