Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Desidera is active.

Publication


Featured researches published by S. Desidera.


Astronomy and Astrophysics | 2003

Distances and ages of NGC 6397, NGC 6752 and 47 Tuc

R. Gratton; A. Bragaglia; Eugenio Carretta; G. Clementini; S. Desidera; F. Grundahl; Sara Lucatello

New improved distances and absolute ages for the Galactic globular clusters NGC 6397, NGC 6752, and 47 Tuc are obtained using the Main Sequence Fitting Method. We derived accurate estimates of reddening and metal abundance for these three clusters using a strictly dierential procedure, where the Johnson B V and Stromgren b y colours and UVES high resolution spectra of turn-o stars and early subgiants belonging to the clusters were compared to similar data for field subdwarfs with accurate parallaxes measured by Hipparcos. The use of a reddening free temperature indicator (the profile of H) allowed us to reduce the error bars in reddening determinations to about 0.005 mag, and in metal abundances to 0.04 dex, in the scales defined by the local subdwarfs. Error bars in distances are then reduced to about 0.07 mag for each cluster, yielding ages with typical random errors of about 1 Gyr. We find that NGC 6397 and NGC 6752 have ages of 13:9 1:1 and 13:8 1: 1G yr respectively, when standard isochrones without microscopic diusion are used, while 47 Tuc is probably about 2.6 Gyr younger, in agreement with results obtained by other techniques sensitive to relative ages. If we use models that include the eects of sedimentation due to microscopic diusion in agreement with our observations of NGC 6397, and take into account various sources of possible systematic errors with a statistical approach, we conclude that the age of the oldest globular clusters in the Galaxy is 13:4 0:8 0:6 Gyr, where the first error bar accounts for random eects, and the second one for systematic errors. This age estimate is fully compatible with the very recent results from WMAP, and indicates that the oldest Galactic globular clusters formed within the first 1.7 Gyr after the Big Bang, corresponding to a redshift of z 2:5, in a standardCDM model. The epoch of formation of the (inner halo) globular clusters lasted about 2.6 Gyr, ending at a time corresponding to a redshift of z 1:3. On the other hand, our new age estimate once combined with values of H0 given by WMAP and by the HST Key Project, provides a robust upper limit at 95% level of confidence of M < 0:57, independently of type Ia SNe, and strongly supports the need for a dark energy. The new cluster distances lead to new estimates of the horizontal branch luminosity, that may be used to derive the zero point of the relation between the horizontal branch absolute magnitude and metallicity: we obtain MV (HB)= (0:22 0:05)((Fe=H)+ 1:5)+ (0:56 0:07). This zero point is 0.03 mag shorter than obtained by Carretta et al. (2000) and within the error bar it agrees with, but it is more precise than most of the previous individual determinations of the RR Lyrae absolute magnitude. When combined with the apparent average luminosity of the RR Lyrae stars in the LMC by Clementini et al. (2003), this zero point provides a new estimate of the distance modulus to the LMC: (m M)0= 18:50 0:09.


Astronomy and Astrophysics | 2007

Properties of planets in binary systems - The role of binary separation

S. Desidera; Mauro Barbieri

Aims. The statistical properties of planets in binaries were investigated. Any difference to planets orbiting single stars can shed light on the formation and evolution of planetary systems. As planets were found around components of binaries with very different separation and mass ratio, it is particularly important to study the characteristics of planets as a function of the effective gravitational influence of the companion. Methods. A compilation of planets in binary systems was made; a search for companions orbiting stars recently shown to host planets was performed, resulting in the addition of two further binary planet hosts (HD 20782 and HD 109749). The probable original properties of the three binary planet hosts with white dwarfs companions were also investigated. Using this updated sample of planets in binaries we performed a statistical analysis of the distributions of planet mass, period, and eccentricity, fraction of multiplanet systems, and stellar metallicity for planets orbiting components of tight and wide binaries and single stars. Results. The only highly significant difference revealed by our analysis concerns the mass distribution of short-period planets. Massive planets in short period orbits are found in most cases around the components of rather tight binaries. The properties of exoplanets orbiting the components of wide binaries are compatible with those of planets orbiting single stars, except for a possible greater abundance of high-eccentricity planets. The previously suggested lack of massive planets with P > 100 days in binaries is not confirmed. Conclusions. We conclude that the presence of a stellar companion with separation smaller than 100-300 AU is able to modify the formation and/or migration and/or the dynamical evolution history of giant planets while wide companions play a more limited role.


Astronomy and Astrophysics | 2002

The mysterious eruption of V838 Mon

Ulisse Munari; Arne A. Henden; S. Kiyota; D. Laney; F. Marang; T. Zwitter; Romano L. M. Corradi; S. Desidera; P. M. Marrese; E. Giro; Federico Boschi; M. B. Schwartz

V838 Mon is marking one of the most mysterious stellar outbursts on record. The spectral energy distribution of the progenitor resembles an under-luminous F main sequence star (at V =1 5:6 mag), that erupted into a cool supergiant following a complex and multi-maxima lightcurve (peaking at V =6 :7 mag). The outburst spectrum show BaII, LiI and lines of several s elements, with wide P-Cyg proles and a moderate and retracing emission in the Balmer lines. A light-echo discovered expanding around the object helped to constrain the distance (d = 790 30 pc), providing MV =+ 4:45 in quiescence and MV = 4:35 at optical maximum (somewhat dependent on the still uncertain EB V =0 :5 reddening). The general outburst trend is toward lower temperatures and larger luminosities, and continuing so at the time of writing. The object properties conflict with a classication within already existing categories: the progenitor was not on a post-AGB track and thus the similarities with the born-again AGB stars FG Sge, V605 Aql and Sakurais object are limited to the cool giant spectrum at maximum; the cool spectrum, the moderate wind velocity (500 km s 1 and progressively reducing) and the monotonic decreasing of the low ionization condition argues against a classical nova scenario. The closest similarity is with a star that erupted into an M-type supergiant discovered in M 31 by Rich et al. (1989), that became however much brighter by peaking at MV = 9:95, and with V4332 Sgr that too erupted into an M-type giant (Martini et al. 1999) and that attained a lower luminosity, closer to that of V838 Mon. M 31-RedVar, V4332 Sgr and V838 Mon could be all manifestations of a new class of astronomical objects.


Astronomy and Astrophysics | 2003

Abundances for metal-poor stars with accurate parallaxes - II.

R. Gratton; Eugenio Carretta; S. Desidera; Sara Lucatello; Paola Mazzei; Mauro Barbieri

Abundances for α−elements and Fe in about 150 field subdwarfs and early subgiants with accurate parallaxes and kinematic data are used to discuss the run of abundance ratios in metal-poor stars in the solar neighborhood. Based on kinematics, we separated stars into two populations: the first one has a positive velocity of rotation around the galactic center, and it is likely to be related to the dissipational collapse of the galaxy; the second one has either negligible or negative rotational velocity, and it is likely related to an accretion component. The two populations show a large overlap in metallicity. However, they show distinct chemical properties. For the first population we found that there are close correlations (with small scatters around) of the rotational velocity with metallicity and with the Fe/α abundance ratio: this might be a signature of a not very fast collapse of the progenitor clouds, with enough time for a significant contribution by SNe Ia, although this result needs to be confirmed by a 3-D/non-LTE study. On the other side, the second population exhibits a larger scatter in both the above mentioned relations, and on average, a larger Fe/α ratio at a given metallicity, suggesting a larger scatter in ages. We argue that the lack of stars with moderate rotational velocities and high Fe/α abundance ratios is due to the short merging time for protogalactic clouds with prograde motion, while the presence of a group of counter-rotating stars with this characteristics indicates a much longer typical lifetimes for protogalactic fragments having such a motion. Finally, we found that perigalactic distances correlate with the Fe/α abundance ratios better than the apogalactic distances.


Astronomy and Astrophysics | 2010

\alpha-

S. Messina; S. Desidera; Massimo Turatto; Alessandro C. Lanzafame; E. F. Guinan

Context. Examining the angular momentum of stars and its interplay with their magnetic fields represent a promising way to probe the stellar internal structure and evolution of low-mass stars. Aims. We attempt to determine the rotational and magnetic-related activity properties of stars at different stages of evolution.We focused our attention primarily on members of clusters and young stellar associations of known ages. In this study, our targets are 6 young loose stellar associations within 100 pc and with ages in the range 8-70 Myr: TW Hydrae (~8 Myr), β Pictoris (~10 Myr), Tucana/Horologium, Columba, Carina (~30 Myr), and AB Doradus (~70 Myr). Additional rotational data for α Persei and the Pleiades from the literature are also considered. Methods. Rotational periods of stars exhibiting rotational modulation due to photospheric magnetic activity (i.e., starspots) were determined by applying the Lomb-Scargle periodogram technique to photometric time-series data obtained by the All Sky Automated Survey (ASAS). The magnetic activity level was derived from the amplitude of the V lightcurves. The statistical significance of the rotational evolution at different ages was inferred by applying a two-sided Kolmogorov-Smirnov test to subsequent age-bins. Results. We detected the rotational modulation and measured the rotation periods of 93 stars for the first time, and confirmed the periods of 41 stars already known from the literature. For an additional 10 stars, we revised the period determinations by other authors. The sample was augmented with periods of 21 additional stars retrieved from the literature. In this way, for the first time we were able to determine the largest set of rotation periods at ages of ~8, ~10 and ~30 Myr, as well as increase by 150% the number of known periodic members of AB Dor. Conclusions. The analysis of the rotation periods in young stellar associations, supplemented by Orion Nebula Cluster (ONC) and NGC 2264 data from the literature, has allowed us to find that in the 0.6-1.2 M ⊙ range the most significant variations in the rotation period distributipn are the spin-up between 9 and 30 Myr and the spin-down between 70 and 110 Myr. Variations of between 30 and 70 Myr are rather doubtful, despite the median period indicating a significant spin-up. The photospheric activity level is found to be correlated with rotation at ages greater than ~70 Myr and to show some additional age dependence besides that related to rotation and mass.


Astronomy and Astrophysics | 2007

elements in the halo

Mariangela Bonavita; S. Desidera

Context. The frequency of planets in binaries is an important issue in the field of extrasolar planet studies, because of its relevance in estimating of the global planet population of our Galaxy and the clues it can give to our understanding of planet formation and evolution. However, only preliminary estimates are available in the literature. Aims. We analyze and compare the frequency of planets in multiple systems to the frequency of planets orbiting single stars. We also try to highlight possible connections between the frequency of planets and the orbital parameters of the binaries (such as the periastron and mass ratio.) Methods. A literature search was performed for binaries and multiple systems among the stars of the sample with uniform planet detectability defined by Fischer & Valenti (2005, ApJ, 622, 1102), and 202 of the 850 stars of the sample turned out to be binaries, allowing a statistical comparison of the frequency of planets in binaries and single stars and a study of the run of the planet frequency as a function of the binary separation. Results. We found that the global frequency of planets in the binaries of the sample is not statistically different from that of planets in single stars. Even conservatively taking the probable incompleteness of binary detection in our sample into account, we estimate that the frequency of planets in binaries can be no more than a factor of three lower than that of planets in single stars. There is no significant dependence of planet frequency on the binary separation, except for a lower value of frequency for close binaries. However, this is probably not as low as required to explain the presence of planets in close binaries only as the result of modifications of the binary orbit after the planet formation.


Astronomy and Astrophysics | 2004

RACE-OC project: Rotation and variability of young stellar associations within 100 pc

S. Desidera; R. Gratton; S. Scuderi; R. U. Claudi; Rosario Cosentino; Mauro Barbieri; G. Bonanno; Eugenio Carretta; Michael Endl; Sara Lucatello; A. F. Martinez Fiorenzano; Francesco Marzari

We present iron abundance analysis for 23 wide binaries with main sequence components in the temperture range 4900-6300 K, taken from the sample of the pairs currently included in the radial velocity planet search on going at the Telescopio Nazionale Galileo (TNG) using the high resolution spectrograph SARG. The use of a line-by-line differential anal- ysis technique between the components of each pair allows us to reach errors of about 0.02 dex in the iron content difference. Most of the pairs have abundance differences lower than 0.02 dex and there are no pairs with differences larger than 0.07 dex. The four cases of differences larger than 0.02 dex may be spurious because of the larger error bars affecting pairs with large temperature difference, cold stars and rotating stars. The pair HD 219542, previously reported by us to have a different compo- sition, here is shown to be normal. For non-rotating stars warmer than 5500 K, characterized by a thinner convective envelope and for which our analyis appears to be of higher accuracy, we are able to exclude in most cases the consumption of more than 1 Earth Mass of iron (about 5 Earth masses of meteoritic material) during the main sequence lifetime of the stars, placing more stringent limits (about 0.4 Earth masses of iron) in five cases of warm stars. This latter limit is similar to the estimates of rocky material accreted by the Sun during its main sequence lifetime. Combining the results of the present analysis with those for the Hyades and Pleiades, we conclude that the hypothesis that pollution by planetary material is the only mechanism responsible for the highest metallicity of the stars with planets may be rejected at more than 99% level of confidence if the incidence of planets in these samples is as high as 8% and similar to the field stars included in current radial velocity surveys. However, the significance of this result drops considerably if the incidence of planets around stars in binary systems and clusters is less than a half of that around normal field stars.


Astronomy and Astrophysics | 2016

The frequency of planets in multiple systems

A. Zurlo; A. Vigan; R. Galicher; A.-L. Maire; D. Mesa; R. Gratton; G. Chauvin; M. Kasper; Claire Moutou; M. Bonnefoy; S. Desidera; Lyu Abe; Daniel Apai; Andrea Baruffolo; Pierre Baudoz; J. Baudrand; J.-L. Beuzit; P. Blancard; A. Boccaletti; F. Cantalloube; M. Carle; E. Cascone; Julien Charton; R. U. Claudi; A. Costille; V. De Caprio; Kjetil Dohlen; C. Dominik; D. Fantinel; Philippe Feautrier

Context. The planetary system discovered around the young A-type HR 8799 provides a unique laboratory to: a) test planet formation theories; b) probe the diversity of system architectures at these separations, and c) perform comparative (exo)planetology. Aims. We present and exploit new near-infrared images and integral-field spectra of the four gas giants surrounding HR 8799 obtained with SPHERE, the new planet finder instrument at the Very Large Telescope, during the commissioning and science verification phase of the instrument (July–December 2014). With these new data, we contribute to completing the spectral energy distribution (SED) of these bodies in the 1.0–2.5 μm range. We also provide new astrometric data, in particular for planet e, to further constrain the orbits. Methods. We used the infrared dual-band imager and spectrograph (IRDIS) subsystem to obtain pupil-stabilized, dual-band H2H3 (1.593 μm, 1.667 μm), K1K2 (2.110 μm, 2.251 μm), and broadband J (1.245 μm) images of the four planets. IRDIS was operated in parallel with the integral field spectrograph (IFS) of SPHERE to collect low-resolution (R ~ 30), near-infrared (0.94–1.64 μm) spectra of the two innermost planets HR 8799 d and e. The data were reduced with dedicated algorithms, such as the Karhunen-Loeve image projection (KLIP), to reveal the planets. We used the so-called negative planets injection technique to extract their photometry, spectra, and measure their positions. We illustrate the astrometric performance of SPHERE through sample orbital fits compatible with SPHERE and literature data. Results. We demonstrated the ability of SPHERE to detect and characterize planets in this kind of systems, providing spectra and photometry of its components. The spectra improve upon the signal-to-noise ratio of previously obtained data and increase the spectral coverage down to the Y band. In addition, we provide the first detection of planet e in the J band. Astrometric positions for planets HR 8799 bcde are reported for the epochs of July, August, and December 2014. We measured the photometric values in J, H2H3, K1K2 bands for the four planets with a mean accuracy of 0.13 mag. We found upper limit constraints on the mass of a possible planet f of 3–7 MJup . Our new measurements are more consistent with the two inner planets d and e being in a 2d:1e or 3d:2e resonance. The spectra of HR 8799 d and e are well matched by those of L6-8 field dwarfs. However, the SEDs of these objects are redder than field L dwarfs longward of 1.6 μm.


Astronomy and Astrophysics | 2010

Abundance difference between components of wide binaries

Esther Buenzli; Christian Thalmann; A. Vigan; A. Boccaletti; G. Chauvin; J.-C. Augereau; Michael R. Meyer; Francois Menard; S. Desidera; S. Messina; Thomas Henning; G. Montagnier; Jean-Luc Beuzit; Mariangela Bonavita; Anne Eggenberger; Anne-Marie Lagrange; D. Mesa; David Mouillet; Sascha P. Quanz

The debris disk known as “The Moth” is named after its unusually asymmetric surface brightness distribution. It is locat ed around the � 90 Myr old G8V star HD 61005 at 34.5 pc and has previously been imaged by the HST at 1.1 and 0.6� m. Polarimetric observations suggested that the circumstellar material consists of two d istinct components, a nearly edge-on disk or ring, and a swept-back feature, the result of interaction with the interstellar medium. We r esolve both components at unprecedented resolution with VLT/NACO Hband imaging. Using optimized angular differential imaging techniques to remove the light of the star, we reveal the disk component as a distinct narrow ring at inclination i = 84: 3�1: 0 � . We determine a semi-major axis of a = 61: 25�0: 85 AU and an eccentricity of e = 0: 045�0: 015, assuming that periastron is located along the apparent disk major axis. Therefore, the ring center is offset from the star by at least 2: 75�0: 85 AU. The offset, together with a relatively steep inner rim, could indic ate a planetary companion that perturbs the remnant planetesimal belt. From our imaging data we set upper mass limits for companions that exclude any object above the deuterium-burning limit for separations down to 0: 00 3. The ring shows a strong brightness asymmetry along both the major and minor axis. A brighter front side could indicate forward-scattering grains, while the brightness difference between the NE and SW components can be only partly explained by the ring center offset, suggesting additional density enhancements on one side of the ring. The swept-back component appears as two streamers originating near the NE and SW edges of the debris ring.


Experimental Astronomy | 2014

First light of the VLT planet finder SPHERE III. New spectrophotometry and astrometry of the HR 8799 exoplanetary system

R. Gratton; G. Bonanno; P. Bruno; A. CalÍ; R. U. Claudi; R. Cosentino; S. Desidera; F. Diego; G. Farisato; G. Martorana; M. Rebeschini; Salvatore Scuderi

SARG is a cross dispersed echelle spectrograph in operation since late spring 2000 at the Italian Telescopio Nazionale Galileo (TNG) 3.5 m telescope, La Palma. SARG offers both single object and long slit (up to 26 arcsec) observing modes covering a spectral range from λ = 0.37 up to1 μm, with resolution ranging from R = 29,000 up to R = 164,000. Cross dispersion is provided by means of a selection of four grisms; interference filters may be used for the long slit mode (up to 26 arcsec). A dioptric camera images the cross dispersed spectra onto a mosaic of two 2048 × 4096 EEV CCDs (pixel size: 13.5 μm) allowing complete spectral coverage at all resolving power for λ < 0.8 μm. In order to reach a high wavelength calibration precision an iodine-absorbing cell is provided. A Distributed Active Temperature Control System (DATCS) maintains constant the temperature of all spectrograph components at a preset value. Early results show that SARG works according to original specifications in terms of wavelength coverage, efficiency (measured peak efficiency is about 13%),resolution (maximum resolution R = 164,000 using a 0.3 arcsec slit, R ∼144,000 using an image slicer), and stability (preliminary estimates of radial velocity accuracy is ∼3 m/s using the iodine cell and ±150 m/s without the iodine cell).

Collaboration


Dive into the S. Desidera's collaboration.

Top Co-Authors

Avatar

M. Bonnefoy

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Vigan

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

J.-L. Beuzit

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

M. Langlois

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

A.-M. Lagrange

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge