S. Deutsch
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Deutsch.
Journal of Biomechanical Engineering-transactions of The Asme | 1994
J. T. Baldwin; S. Deutsch; David B. Geselowitz; John M. Tarbell
Laser Doppler Anemometry measurements of mean (ensemble average) velocities and turbulent (Reynolds) stresses at 140 locations within the left ventricle of the Penn State 70 cc electric artificial heart/ventricular assist device are reported at 8 times during the cardiac cycle. Mean velocity patterns indicate that the surfaces of the blood sac and valve tracts are exposed to significant levels of wall shear stress (good wall washing) during some portion of the flow cycle, and there is no location where the flow is stagnant over the entire flow cycle. This implies that thrombus deposition within the artificial heart should be suppressed. Turbulent stresses in the main pumping chamber and the outflow tracts of the tilting disk valves do not exceed 2000 dynes/cm2. The highest turbulent stresses (20,000 dynes/cm2) and smallest turbulent microscales (6 microns) are found in the regurgitant jets on the minor orifice side of the aortic valve during diastole and the mitral valve during systole. Taken together, the data suggest that improvements in artificial heart fluid mechanics will come through valve design and pump operating conditions, not pumping chamber design.
Journal of Biomechanical Engineering-transactions of The Asme | 1993
J. T. Baldwin; S. Deutsch; H. L. Petrie; John M. Tarbell
The purpose of this study was to develop a method to accurately determine mean velocities and Reynolds stresses in pulsatile flows. The pulsatile flow used to develop this method was produced within a transparent model of a left ventricular assist device (LVAD). Velocity measurements were taken at locations within the LVAD using a two-component laser Doppler anemometry (LDA) system. At each measurement location, as many as 4096 realizations of two coincident orthogonal velocity components were collected during preselected time windows over the pump cycle. The number of realizations was varied to determine how the number of data points collected affects the accuracy of the results. The duration of the time windows was varied to determine the maximum window size consistent with an assumption of pseudostationary flow. Erroneous velocity realizations were discarded from individual data sets by implementing successive elliptical filters on the velocity components. The mean velocities and principal Reynolds stresses were determined for each of the filtered data sets. The filtering technique, while eliminating less than 5 percent of the original data points, significantly reduced the computed Reynolds stresses. The results indicate that, with proper filtering, reasonable accuracy can be achieved using a velocity data set of 250 points, provided the time window is small enough to ensure pseudostationary flow (typically 20 to 40 ms). The results also reveal that the time window which is required to assume pseudostationary flow varies with location and cycle time and can range from 100 ms to less than 20 ms.(ABSTRACT TRUNCATED AT 250 WORDS)
Asaio Journal | 1989
Baldwin Jt; John M. Tarbell; S. Deutsch; David B. Geselowitz
A laser Doppler anemometry system was used to measure fluid velocities at 127 locations within a plexiglas model of the 70 cm3 Penn State electric ventricular assist device (VAD) fitted with Bjork-Shiley convexo-concave tilting disk valves. The velocity measurements were made using a seeded blood analog fluid that matched the kinematic viscosity of blood and the refractive index of plexiglas. At each location, 250 instantaneous velocity realizations were collected at eight instances during the pump cycle. The data were filtered and averaged to calculate mean (ensemble averaged) velocities. The results indicate that the largest mean velocities are created during systole in the VADs outlet tract, and during diastole in the major orifice of the mitral valve. A single vortex centered roughly about the axis of the cylindrical portion of the pump is created during early diastole. This vortex, which persists into early systole, provides good washing of the VAD walls. However, it does appear to impede the flow entering the VAD through the minor orifice of the mitral valve. High velocities also occur during diastole along the minor orifice wall of the outlet tract and are directed into the chamber. These retrograde velocities suggest the presence of a regurgitant jet near the wall of the prosthetic valve.
Annals of Biomedical Engineering | 2000
V. Kini; C. Bachmann; Arnold A. Fontaine; S. Deutsch; John M. Tarbell
AbstractHigh density particle image velocimetry, with spatial resolution of O(1 mm), was used to measure the effect of occluder rebound on the flow field near a Bjork–Shiley Monostrut tilting-disk mitral valve. The ability to measure two velocity components over an entire plane simultaneously provides a very different insight into the flow compared to the more traditional point to point techniques (like Laser Doppler Velocimetry) that were utilized in previous investigations of the regurgitant flow. A picture of the effects of occluder rebound on the fluid flow in the atrial chamber is presented. Specifically, fluid velocities in excess of 1.5 m/s traveling away from the atrial side were detected 3 mm away from the valve seat in the local low pressure region created by the occluder rebound on the major orifice side where cavitation has been observed. This analysis is the first spatially detailed flow description of the effects of occluder rebound on the flow field past a tilting-disk mechanical heart valve and further reinforces the hypothesis that the rebound effect plays a significant role in the formation of cavitation, which has been implicated in the hemolysis and wear associated with tilting-disk valves in vivo.
Journal of Biomechanical Engineering-transactions of The Asme | 1994
Conrad M. Zapanta; Edward G. Liszka; Theodore C. Lamson; David R. Stinebring; S. Deutsch; David B. Geselowitz; John M. Tarbell
A method for real-time in vitro observation of cavitation on a prosthetic heart valve has been developed. Cavitation of four blood analog fluids (distilled water, aqueous glycerin, aqueous polyacrylamide, and aqueous xanthan gum) has been documented for a Medtronic/Hall prosthetic heart valve. This method employed a Penn State Electrical Ventricular Assist Device in a mock circulatory loop that was operated in a partial filling mode associated with reduced atrial filling pressure. The observations were made on a valve that was located in the mitral position, with the cavitation occurring on the inlet side after valve closure on every cycle. Stroboscopic videography was used to document the cavity life cycle. Bubble cavitation was observed on the valve occluder face. Vortex cavitation was observed at two locations in the vicinity of the valve occluder and housing. For each fluid, cavity growth and collapse occurred in less than one millisecond, which provides strong evidence that the cavitation is vaporous rather than gaseous. The cavity duration time was found to decrease with increasing atrial pressure at constant aortic pressure and beat rate. The area of cavitation was found to decrease with increasing delay time at a constant aortic pressure, atrial pressure, and beat rate. Cavitation was found to occur in each of the fluids, with the most cavitation seen in the Newtonian fluids (distilled water and aqueous glycerin).
Journal of Biomechanical Engineering-transactions of The Asme | 1987
K. A. Mann; S. Deutsch; John M. Tarbell; David B. Geselowitz; Gerson Rosenberg; W. S. Pierce
The fluid dynamic behavior of a Newtonian water/glycerol solution, a non-Newtonian polymer (separan) solution, and bovine blood were compared in the Penn State Electrical Ventricular Assist Device (EVAD). Pulsed doppler ultrasound velocimetry was used to measure velocities in the near wall region (0.95-2.7 mm) along the perimeter of the pump. Mean velocity, turbulence intensity, local and convective acceleration, and shear rate were calculated from the PDU velocity measurements. Flow visualization provided qualitative information about the general flow patterns in the EVAD. Results indicate that water/glycerol does not accurately model the flow characteristics of bovine blood in the EVAD. The non-Newtonian separan solution produced results closer to those of the bovine blood than did the water/glycerol solution. Near wall velocity magnitudes for the separan were similar to those of the bovine blood, but the profile shapes differed for portions of the pump cycle. All three fluids exhibited periods of stagnation. Bovine blood results indicated the presence of a desired rotational washout pattern at midsystole, while results with the other fluids did not show this feature.
Journal of Biomechanical Engineering-transactions of The Asme | 2009
Richard B. Medvitz; Varun Reddy; S. Deutsch; Keefe B. Manning; Eric G. Paterson
Computational fluid dynamics (CFD) is used to asses the hydrodynamic performance of a positive displacement left ventricular assist device. The computational model uses implicit large eddy simulation direct resolution of the chamber compression and modeled valve closure to reproduce the in vitro results. The computations are validated through comparisons with experimental particle image velocimetry (PIV) data. Qualitative comparisons of flow patterns, velocity fields, and wall-shear rates demonstrate a high level of agreement between the computations and experiments. Quantitatively, the PIV and CFD show similar probed velocity histories, closely matching jet velocities and comparable wall-strain rates. Overall, it has been shown that CFD can provide detailed flow field and wall-strain rate data, which is important in evaluating blood pump performance.
Journal of Biomechanical Engineering-transactions of The Asme | 1988
J. T. Baldwin; John M. Tarbell; S. Deutsch; David B. Geselowitz; Gerson Rosenberg
Wall shear rates at eleven sites within the Penn State Electric Ventricular Assist Device (EVAD) were determined with the pump operating under conditions of 30 and 50 percent systolic duration and a mean flow rate of 5.8 L/min using a flush-mounted hot-film probe. Probe calibrations were performed with the hot-film in two orientations relative to the flow direction: a standard orientation and an orientation in which the hot-film was rotated by 90 deg from the standard orientation. The magnitude and direction of the wall shear stress at each site within the EVAD were estimated from ensemble averaged voltage data recorded for similar standard and rotated film orientations. The results indicate that, during diastole the wall shear stress direction around the pumps periphery for both operating conditions is predominantly perpendicular to the inflow-outflow plane (in the direction of the pusher plate motion) and reaches a peak value of approximately 350 dynes/cm2. The highest wall shear stresses were found near the prosthetic aortic valve (inside the EVAD) under the 30 percent systolic duration condition and are estimated to be as high as 2700 dynes/cm2. Peak shear stress values of 1400 dynes/cm2 were observed in the vicinity of the prosthetic mitral valve under both operating conditions. The results suggested that the valve regions are substantially more hemolytic than other wall regions of the EVAD; the magnitudes of the wall shear stresses are sensitive to operating conditions; and that wall shear in the direction of pusher plate motion can be significant.
Annals of Biomedical Engineering | 1998
Juan-Carlos Maymir; S. Deutsch; Richard S. Meyer; David B. Geselowitz; John M. Tarbell
AbstractLaser Doppler velocimetry, with a high temporal resolution (1 ms time windows), was used to measure the flow field in two regions (major and minor orifices) near the aortic and mitral valves (Bjork Shiley™ monostrut Nos. 25 and 27, respectively) of the Penn State artificial heart. The motion of each valve was also investigated using a 1000 frame/s video camera in order to estimate the valves closing velocity. Fluid velocities in excess of and opposite to valve closing velocity were detected near the valve, providing evidence of “squeeze flow.” Maximum Reynolds shear stresses of approximately 20,000 dyn/cm2 and time-averaged Reynolds shear stresses of approximately 2000 dyn/cm2 were observed during the regurgitant flow phase. These elevated Reynolds shear stresses suggest that regurgitant jets play a role in the hemolysis and thrombosis associated with tilting disk heart valves in an artificial heart environment.
Journal of Biomechanical Engineering-transactions of The Asme | 2011
Luke H. Herbertson; S. Deutsch; Keefe B. Manning
Blood damage and thrombosis are major complications that are commonly seen in patients with implanted mechanical heart valves. For this in vitro study, we isolated the closing phase of a bileaflet mechanical heart valve to study near valve fluid velocities and stresses. By manipulating the valve housing, we gained optical access to a previously inaccessible region of the flow. Laser Doppler velocimetry and particle image velocimetry were used to characterize the flow regime and help to identify the key design characteristics responsible for high shear and rotational flow. Impact of the closing mechanical leaflet with its rigid housing produced the highest fluid stresses observed during the cardiac cycle. Mean velocities as high as 2.4 m/s were observed at the initial valve impact. The velocities measured at the leaflet tip resulted in sustained shear rates in the range of 1500-3500 s(-1), with peak values on the order of 11,000-23,000 s(-1). Using velocity maps, we identified regurgitation zones near the valve tip and through the central orifice of the valve. Entrained flow from the transvalvular jets and flow shed off the leaflet tip during closure combined to generate a dominant vortex posterior to both leaflets after each valve closing cycle. The strength of the peripheral vortex peaked within 2 ms of the initial impact of the leaflet with the housing and rapidly dissipated thereafter, whereas the vortex near the central orifice continued to grow during the rebound phase of the valve. Rebound of the leaflets played a secondary role in sustaining closure-induced vortices.