Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Dusko Ehrlich is active.

Publication


Featured researches published by S. Dusko Ehrlich.


Nature | 2010

A human gut microbial gene catalogue established by metagenomic sequencing

Junjie Qin; Ruiqiang Li; Jeroen Raes; Manimozhiyan Arumugam; Kristoffer Sølvsten Burgdorf; Chaysavanh Manichanh; Trine Nielsen; Nicolas Pons; Florence Levenez; Takuji Yamada; Daniel R. Mende; Junhua Li; Junming Xu; Shaochuan Li; Dongfang Li; Jianjun Cao; Bo Wang; Huiqing Liang; Huisong Zheng; Yinlong Xie; Julien Tap; Patricia Lepage; Marcelo Bertalan; Jean-Michel Batto; Torben Hansen; Denis Le Paslier; Allan Linneberg; H. Bjørn Nielsen; Eric Pelletier; Pierre Renault

To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, ∼150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively.


Nature | 2011

Enterotypes of the human gut microbiome

Manimozhiyan Arumugam; Jeroen Raes; Eric Pelletier; Denis Le Paslier; Takuji Yamada; Daniel R. Mende; Gabriel da Rocha Fernandes; Julien Tap; Thomas Brüls; Jean-Michel Batto; Marcelo Bertalan; Natalia Borruel; Francesc Casellas; Leyden Fernandez; Laurent Gautier; Torben Hansen; Masahira Hattori; Tetsuya Hayashi; Michiel Kleerebezem; Ken Kurokawa; Marion Leclerc; Florence Levenez; Chaysavanh Manichanh; H. Bjørn Nielsen; Trine Nielsen; Nicolas Pons; Julie Poulain; Junjie Qin; Thomas Sicheritz-Pontén; Sebastian Tims

Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host–microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.


Nature | 2012

A metagenome-wide association study of gut microbiota in type 2 diabetes

Junjie Qin; Yingrui Li; Zhiming Cai; Shenghui Li; Jianfeng Zhu; Fan Zhang; Suisha Liang; Wenwei Zhang; Yuanlin Guan; Dongqian Shen; Yangqing Peng; Dongya Zhang; Zhuye Jie; Wenxian Wu; Youwen Qin; Wenbin Xue; Junhua Li; Lingchuan Han; Donghui Lu; Peixian Wu; Yali Dai; Xiaojuan Sun; Zesong Li; Aifa Tang; Shilong Zhong; Xiaoping Li; Weineng Chen; Ran Xu; Mingbang Wang; Qiang Feng

Assessment and characterization of gut microbiota has become a major research area in human disease, including type 2 diabetes, the most prevalent endocrine disease worldwide. To carry out analysis on gut microbial content in patients with type 2 diabetes, we developed a protocol for a metagenome-wide association study (MGWAS) and undertook a two-stage MGWAS based on deep shotgun sequencing of the gut microbial DNA from 345 Chinese individuals. We identified and validated approximately 60,000 type-2-diabetes-associated markers and established the concept of a metagenomic linkage group, enabling taxonomic species-level analyses. MGWAS analysis showed that patients with type 2 diabetes were characterized by a moderate degree of gut microbial dysbiosis, a decrease in the abundance of some universal butyrate-producing bacteria and an increase in various opportunistic pathogens, as well as an enrichment of other microbial functions conferring sulphate reduction and oxidative stress resistance. An analysis of 23 additional individuals demonstrated that these gut microbial markers might be useful for classifying type 2 diabetes.


Nature | 2013

Richness of human gut microbiome correlates with metabolic markers

Trine Nielsen; Junjie Qin; Edi Prifti; Falk Hildebrand; Gwen Falony; Mathieu Almeida; Manimozhiyan Arumugam; Jean-Michel Batto; Sean Kennedy; Pierre Leonard; Junhua Li; Kristoffer Sølvsten Burgdorf; Niels Grarup; Torben Jørgensen; Ivan Brandslund; Henrik Bjørn Nielsen; Agnieszka Sierakowska Juncker; Marcelo Bertalan; Florence Levenez; Nicolas Pons; Simon Rasmussen; Shinichi Sunagawa; Julien Tap; Sebastian Tims; Erwin G. Zoetendal; Søren Brunak; Karine Clément; Joël Doré; Michiel Kleerebezem; Karsten Kristiansen

We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus gut bacterial richness. They contain known and previously unknown bacterial species at different proportions; individuals with a low bacterial richness (23% of the population) are characterized by more marked overall adiposity, insulin resistance and dyslipidaemia and a more pronounced inflammatory phenotype when compared with high bacterial richness individuals. The obese individuals among the lower bacterial richness group also gain more weight over time. Only a few bacterial species are sufficient to distinguish between individuals with high and low bacterial richness, and even between lean and obese participants. Our classifications based on variation in the gut microbiome identify subsets of individuals in the general white adult population who may be at increased risk of progressing to adiposity-associated co-morbidities.


Nature | 2003

Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis

Natalia Ivanova; Alexei Sorokin; Iain Anderson; Nathalie Galleron; Benjamin Candelon; Vinayak Kapatral; Anamitra Bhattacharyya; Gary Reznik; Natalia Mikhailova; Alla Lapidus; Lien Chu; Michael Mazur; Eugene Goltsman; Niels Bent Larsen; Mark D'Souza; Theresa L. Walunas; Yuri Grechkin; Gordon D. Pusch; Robert Haselkorn; Michael Fonstein; S. Dusko Ehrlich; Ross Overbeek; Nikos C. Kyrpides

Bacillus cereus is an opportunistic pathogen causing food poisoning manifested by diarrhoeal or emetic syndromes. It is closely related to the animal and human pathogen Bacillus anthracis and the insect pathogen Bacillus thuringiensis, the former being used as a biological weapon and the latter as a pesticide. B. anthracis and B. thuringiensis are readily distinguished from B. cereus by the presence of plasmid-borne specific toxins (B. anthracis and B. thuringiensis) and capsule (B. anthracis). But phylogenetic studies based on the analysis of chromosomal genes bring controversial results, and it is unclear whether B. cereus, B. anthracis and B. thuringiensis are varieties of the same species or different species. Here we report the sequencing and analysis of the type strain B. cereus ATCC 14579. The complete genome sequence of B. cereus ATCC 14579 together with the gapped genome of B. anthracis A2012 enables us to perform comparative analysis, and hence to identify the genes that are conserved between B. cereus and B. anthracis, and the genes that are unique for each species. We use the former to clarify the phylogeny of the cereus group, and the latter to determine plasmid-independent species-specific markers.


Cell | 1998

RuvAB Acts at Arrested Replication Forks

Marie Seigneur; Vladimir Bidnenko; S. Dusko Ehrlich; Bénédicte Michel

Replication arrest leads to the occurrence of DNA double-stranded breaks (DSB). We studied the mechanism of DSB formation by direct measure of the amount of in vivo linear DNA in Escherichia coli cells that lack the RecBCD recombination complex and by genetic means. The RuvABC proteins, which catalyze migration and cleavage of Holliday junctions, are responsible for the occurrence of DSBs at arrested replication forks. In cells proficient for RecBC, RuvAB is uncoupled from RuvC and DSBs may be prevented. This may be explained if a Holliday junction forms upon replication fork arrest, by annealing of the two nascent strands. RecBCD may act on the double-stranded tail prior to the cleavage of the RuvAB-bound junction by RuvC to rescue the blocked replication fork without breakage.


Nature Biotechnology | 2014

An integrated catalog of reference genes in the human gut microbiome

Junhua Li; Huijue Jia; Xianghang Cai; Huanzi Zhong; Qiang Feng; Shinichi Sunagawa; Manimozhiyan Arumugam; Jens Roat Kultima; Edi Prifti; Trine Nielsen; Agnieszka Sierakowska Juncker; Chaysavanh Manichanh; Bing Chen; Wenwei Zhang; Florence Levenez; Juan Wang; Xun Xu; Liang Xiao; Suisha Liang; Dongya Zhang; Zhaoxi Zhang; Weineng Chen; Hailong Zhao; Jumana Y. Al-Aama; Sherif Edris; Huanming Yang; Jian Wang; Torben Hansen; Henrik Bjørn Nielsen; Søren Brunak

Many analyses of the human gut microbiome depend on a catalog of reference genes. Existing catalogs for the human gut microbiome are based on samples from single cohorts or on reference genomes or protein sequences, which limits coverage of global microbiome diversity. Here we combined 249 newly sequenced samples of the Metagenomics of the Human Intestinal Tract (MetaHit) project with 1,018 previously sequenced samples to create a cohort from three continents that is at least threefold larger than cohorts used for previous gene catalogs. From this we established the integrated gene catalog (IGC) comprising 9,879,896 genes. The catalog includes close-to-complete sets of genes for most gut microbes, which are also of considerably higher quality than in previous catalogs. Analyses of a group of samples from Chinese and Danish individuals using the catalog revealed country-specific gut microbial signatures. This expanded catalog should facilitate quantitative characterization of metagenomic, metatranscriptomic and metaproteomic data from the gut microbiome to understand its variation across populations in human health and disease.


The EMBO Journal | 1997

DNA double‐strand breaks caused by replication arrest

Bénédicte Michel; S. Dusko Ehrlich; Marilyne Uzest

We report here that DNA double‐strand breaks (DSBs) form in Escherichia coli upon arrest of replication forks due to a defect in, or the inhibition of, replicative DNA helicases. The formation of DSBs was assessed by the appearance of linear DNA detected by pulse‐field gel electrophoresis. Processing of DSBs by recombination repair or linear DNA degradation was abolished by mutations in recBCD genes. Two E.coli replicative helicases were tested, Rep, which is essential in recBC mutants, and DnaB. The proportion of linear DNA increased up to 50% upon shift of rep recBTS recCTS cells to restrictive temperature. No increase in linear DNA was observed in the absence of replicating chromosomes, indicating that the formation of DSBs in rep strains requires replication. Inhibition of the DnaB helicase either by a strong replication terminator or by a dnaBTS mutation led to the formation of linear DNA, showing that blocked replication forks are prone to DSB formation. In wild‐type E.coli, linear DNA was detected in the absence of RecBC or of both RecA and RecD. This reveals the existence of a significant amount of spontaneous DSBs. We propose that some of them may also result from the impairment of replication fork progression.


Nature Biotechnology | 2004

Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus

Alexander Bolotin; Benoit Quinquis; Pierre Renault; Alexei Sorokin; S. Dusko Ehrlich; Saulius Kulakauskas; Alla Lapidus; Eugene Goltsman; Michael Mazur; Gordon D. Pusch; Michael Fonstein; Ross Overbeek; Nikos Kyprides; Bénédicte Purnelle; Deborah Prozzi; Katrina Ngui; David Masuy; Frédéric Hancy; Sophie Burteau; Marc Boutry; Jean Delcour; André Goffeau; Pascal Hols

The lactic acid bacterium Streptococcus thermophilus is widely used for the manufacture of yogurt and cheese. This dairy species of major economic importance is phylogenetically close to pathogenic streptococci, raising the possibility that it has a potential for virulence. Here we report the genome sequences of two yogurt strains of S. thermophilus. We found a striking level of gene decay (10% pseudogenes) in both microorganisms. Many genes involved in carbon utilization are nonfunctional, in line with the paucity of carbon sources in milk. Notably, most streptococcal virulence-related genes that are not involved in basic cellular processes are either inactivated or absent in the dairy streptococcus. Adaptation to the constant milk environment appears to have resulted in the stabilization of the genome structure. We conclude that S. thermophilus has evolved mainly through loss-of-function events that remarkably mirror the environment of the dairy niche resulting in a severely diminished pathogenic potential.


Nature | 2015

Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota

Kristoffer Forslund; Falk Hildebrand; Trine Nielsen; Gwen Falony; Shinichi Sunagawa; Edi Prifti; Sara Vieira-Silva; Valborg Gudmundsdottir; Helle Krogh Pedersen; Manimozhiyan Arumugam; Karsten Kristiansen; Anita Yvonne Voigt; Henrik Vestergaard; Rajna Hercog; Paul Igor Costea; Jens Roat Kultima; Junhua Li; Torben Jørgensen; Florence Levenez; Joël Doré; H. Bjørn Nielsen; Søren Brunak; Jeroen Raes; Torben Hansen; Jun Wang; S. Dusko Ehrlich; Peer Bork; Oluf Pedersen

Citing this paper Please note that where the full-text provided on Kings Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publishers definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publishers website for any subsequent corrections.In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified for treatment yielded divergent conclusions regarding its associated gut microbial dysbiosis. Here we show, using 784 available human gut metagenomes, how antidiabetic medication confounds these results, and analyse in detail the effects of the most widely used antidiabetic drug metformin. We provide support for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures of specific human diseases from those of medication.

Collaboration


Dive into the S. Dusko Ehrlich's collaboration.

Top Co-Authors

Avatar

Bénédicte Michel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Alexei Sorokin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Nicolas Pons

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marie-Christine Chopin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Joël Doré

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Pierre Renault

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christine Delorme

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Florence Levenez

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Alain Chopin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Edi Prifti

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge