Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Düsterer is active.

Publication


Featured researches published by S. Düsterer.


Nature Physics | 2006

Femtosecond diffractive imaging with a soft-X-ray free-electron laser

Henry N. Chapman; Anton Barty; Michael J. Bogan; Sébastien Boutet; Matthias Frank; Stefan P. Hau-Riege; Stefano Marchesini; Bruce W. Woods; Sasa Bajt; W. Henry Benner; Richard A. London; Elke Plönjes; Marion Kuhlmann; Rolf Treusch; S. Düsterer; T. Tschentscher; Jochen R. Schneider; Eberhard Spiller; T. Möller; Christoph F. O. Bostedt; M. Hoener; David A. Shapiro; Keith O. Hodgson; David van der Spoel; Florian Burmeister; Magnus Bergh; Carl Caleman; Gösta Huldt; M. Marvin Seibert; Filipe R. N. C. Maia

Theory predicts1,2,3,4 that, with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft-X-ray free-electron laser. An intense 25 fs, 4×1013 W cm−2 pulse, containing 1012 photons at 32 nm wavelength, produced a coherent diffraction pattern from a nanostructured non-periodic object, before destroying it at 60,000 K. A novel X-ray camera assured single-photon detection sensitivity by filtering out parasitic scattering and plasma radiation. The reconstructed image, obtained directly from the coherent pattern by phase retrieval through oversampling5,6,7,8,9, shows no measurable damage, and is reconstructed at the diffraction-limited resolution. A three-dimensional data set may be assembled from such images when copies of a reproducible sample are exposed to the beam one by one10.


New Journal of Physics | 2011

Femtosecond x-ray pulse length characterization at the Linac Coherent Light Source free-electron laser

S. Düsterer; P. Radcliffe; Christoph Bostedt; John D. Bozek; Adrian L. Cavalieri; Ryan Coffee; John T. Costello; D. Cubaynes; L. F. DiMauro; Y. Ding; G. Doumy; Florian Grüner; Wolfram Helml; Wolfgang Schweinberger; Reinhard Kienberger; Andreas R. Maier; M. Messerschmidt; V. Richardson; C. Roedig; T. Tschentscher; M. Meyer

Two-color, single-shot time-of-flight electron spectroscopy of atomic neon was employed at the Linac Coherent Light Source (LCLS) to measure laser-assisted Auger decay in the x-ray regime. This x-ray-optical cross-correlation technique provides a straightforward, non-invasive and on-line means of determining the duration of femtosecond (>40?fs) x-ray pulses. In combination with a theoretical model of the process based on the soft-photon approximation, we were able to obtain the LCLS pulse duration and to extract a mean value of the temporal jitter between the optical pulses from a synchronized Ti-sapphire laser and x-ray pulses from the LCLS. We find that the experimentally determined values are systematically smaller than the length of the electron bunches. Nominal electron pulse durations of 175 and 75?fs, as provided by the LCLS control system, yield x-ray pulse shapes of 120?20?fs full-width at half-maximum (FWHM) and an upper limit of 40?20?fs FWHM, respectively. Simulations of the free-electron laser agree well with the experimental results.


Journal of Modern Optics | 2010

Non-linear processes in the interaction of atoms and molecules with intense EUV and X-ray fields from SASE free electron lasers (FELs)

N. Berrah; John D. Bozek; John T. Costello; S. Düsterer; Li Fang; J. Feldhaus; H. Fukuzawa; M. Hoener; Y. H. Jiang; Per Johnsson; Eugene T. Kennedy; M. Meyer; R. Moshammer; P. Radcliffe; M. Richter; Arnaud Rouzée; A. Rudenko; A.A. Sorokin; K. Tiedtke; K. Ueda; Joachim H. Ullrich; M. J. J. Vrakking

The advent of free electron laser (FEL) facilities capable of delivering high intensity pulses in the extreme-UV to X-ray spectral range has opened up a wide vista of opportunities to study and control light matter interactions in hitherto unexplored parameter regimes. In particular, current short wavelength FELs can uniquely drive non-linear processes mediated by inner shell electrons and in fields where the photon energy can be as high as 10 keV and so the corresponding optical period reaches below one attosecond. Combined with ultrafast optical lasers, or simply employing wavefront division, pump probe experiments can be performed with femtosecond time resolution. As single photon ionization of atoms and molecules is by now very well understood, they provide the ideal targets for early experiments by which not only FELs can be characterised and benchmarked but can also be the natural departure point in the hunt for non-linear behaviour of atomistic systems bathed in laser fields of ultrahigh photon energy. In this topical review we illustrate with specific examples the gamut of apposite experiments in atomic, molecular physics currently underway at the SCSS Test Accelerator (Japan), FLASH (Hamburg) and LCLS (Stanford).


Applied Physics Letters | 2009

Time-resolved pump-probe experiments beyond the jitter limitations at FLASH

Armin Azima; S. Düsterer; P. Radcliffe; H. Redlin; N. Stojanovic; Wei Li; Holger Schlarb; J. Feldhaus; D. Cubaynes; M. Meyer; J. Dardis; Patrick Hayden; P. Hough; V. Richardson; Eugene T. Kennedy; John T. Costello

Using a noninvasive, electro-optically based electron bunch arrival time measurement at FLASH (free electron laser in Hamburg) the temporal resolution of two-color pump-probe experiments has been significantly improved. The system determines the relative arrival time of the extended ultraviolet pulse of FLASH and an amplified Ti:sapphire femtosecond-laser pulse at the interaction region better than 90 fs rms. In a benchmarking pump-probe experiment using two-color above threshold ionization of noble gases, an enhancement in the timing resolution by a factor of 4 compared to the uncorrected data is obtained.


Optics Letters | 2010

Partial-coherence method to model experimental free-electron laser pulse statistics

Thomas Pfeifer; Y. H. Jiang; S. Düsterer; R. Moshammer; Joachim Ullrich

A general numerical approach is described that allows obtaining model sets of temporal pulse shapes of free-electron lasers (FELs) operating in the self-amplified spontaneous emission mode. Based on a random partial-coherence approach, sets of pulse shapes can be calculated that satisfy statistical criteria of FEL light predicted by established FEL theory. Importantly, the numerically retrieved sets of pulses reproduce the experimentally accessible FEL light characteristics as measured at the Free-electron LASer at Hamburg (FLASH), such as the average spectrum, single-shot spectral shape, and pulse duration. The high-precision agreement with the experimental average spectral shape, without further knowledge of FEL machine parameters, makes this approach a convenient tool for the analysis and theoretical modeling of nonlinear optical or pump-probe experiments with FEL light.


Optics Letters | 2006

Spectroscopic characterization of vacuum ultraviolet free electron laser pulses

S. Düsterer; P. Radcliffe; G. Geloni; U. Jastrow; M. Kuhlmann; E. Plönjes; Kai Tiedtke; R. Treusch; J. Feldhaus; P. Nicolosi; L. Poletto; P. Yeates; H. Luna; John T. Costello; P. Orr; Denis Cubaynes; Michael Meyer

Because of the stochastic nature of self-amplified spontaneous emission (SASE), it is crucial to measure for single pulses the spectral characteristics of ultrashort pulses from the vacuum ultraviolet free electron laser (FLASH) at DESY, Germany. To meet this particular challenge, we have employed both photon and photoelectron spectroscopy. Each FEL pulse is composed of an intense and spectrally complex fundamental, centered at a photon energy of about 38.5 eV, with a bandwidth of 0.5% accompanied by higher harmonics, each carrying an intensity of typically 0.3 to 0.6% of that of the fundamental. The correlation between the harmonics and the fundamental is in remarkable agreement with a simple statistical model of SASE FEL radiation.


Journal of Physics B | 2009

Field-free molecular alignment probed by the free electron laser in Hamburg (FLASH)

Per Johnsson; Arnaud Rouzée; W. Siu; Y. Huismans; F. Lépine; T Marchenko; S. Düsterer; F. Tavella; N. Stojanovic; A. Azima; Rolf Treusch; Matthias F. Kling; Marc J. J. Vrakking

High flux extreme ultraviolet (XUV) sources like the free electron laser (FEL) in Hamburg (FLASH) offer the possibility of diffractive imaging of small objects. Irrespective of whether the diffraction is based on the detection of photons or photoelectrons, it is required that the measurement is done in the reference frame of the molecule meaning that, for a sample of several molecules, it is necessary to pre-align the molecules in the sample. As a step towards performing molecular frame diffraction experiments, we report experiments on field-free molecular alignment performed at FLASH. The impulsive alignment induced by a 100 fs near-infrared laser pulse in a rotationally cold CO2 sample is characterized by ionizing and dissociating the molecules with a time-delayed XUV-FEL pulse. The time-dependent angular distributions of ionic fragments measured by a velocity map imaging spectrometer exhibit rapid changes associated with the induced rotational dynamics. The experimental results show hints of a dissociation process that depends nonlinearly on the XUV intensity.


Nature Communications | 2014

Determining the polarization state of an extreme ultraviolet free-electron laser beam using atomic circular dichroism

T. Mazza; M. Ilchen; A.J. Rafipoor; C. Callegari; P. Finetti; Oksana Plekan; Kevin C. Prince; R. Richter; M.B. Danailov; Alexander Demidovich; G. De Ninno; Cesare Grazioli; R. Ivanov; N. Mahne; Lorenzo Raimondi; Cristian Svetina; L. Avaldi; P. Bolognesi; M. Coreno; Patrick O'Keeffe; M. Di Fraia; Michele Devetta; Y. Ovcharenko; Th. Möller; V. Lyamayev; F. Stienkemeier; S. Düsterer; K. Ueda; John T. Costello; A. K. Kazansky

Ultrafast extreme ultraviolet and X-ray free-electron lasers are set to revolutionize many domains such as bio-photonics and materials science, in a manner similar to optical lasers over the past two decades. Although their number will grow steadily over the coming decade, their complete characterization remains an elusive goal. This represents a significant barrier to their wider adoption and hence to the full realization of their potential in modern photon sciences. Although a great deal of progress has been made on temporal characterization and wavefront measurements at ultrahigh extreme ultraviolet and X-ray intensities, only few, if any progress on accurately measuring other key parameters such as the state of polarization has emerged. Here we show that by combining ultra-short extreme ultraviolet free electron laser pulses from FERMI with near-infrared laser pulses, we can accurately measure the polarization state of a free electron laser beam in an elegant, non-invasive and straightforward manner using circular dichroism.


Optics Letters | 2010

Characterization of a two-color pump–probe setup at FLASH using a velocity map imaging spectrometer

P. Johnsson; Arnaud Rouzée; W. Siu; Y. Huismans; F. Lépine; T. Marchenko; S. Düsterer; F. Tavella; N. Stojanovic; H. Redlin; A. Azima; Marcus Vrakking

We report on the implementation of a high-count-rate charged particle imaging detector for two-color pump-probe experiments at the free electron laser in Hamburg (FLASH). In doing so, we have developed a procedure for finding the spatial and temporal overlap between the extreme UV free electron laser (FEL) pulses and the IR pulses, which allows for complete alignment of the setup in situations where the region of overlap between the FEL and the IR is not easily accessible by means of imaging optics.


New Journal of Physics | 2012

Atomic photoionization in combined intense XUV free-electron and infrared laser fields

P. Radcliffe; Mathias Arbeiter; W. B. Li; S. Düsterer; H Redlin; Patrick Hayden; P. Hough; V. Richardson; John T. Costello; Thomas Fennel; Michael Meyer

We present a systematic study of the photoionization of noble gas atoms exposed simultaneously to ultrashort (20 fs) monochromatic (1–2% spectral width) extreme ultraviolet (XUV) radiation from the Free-electron Laser in Hamburg (FLASH) and to intense synchronized near-infrared (NIR) laser pulses with intensities up to about 1013 W cm−2. Already at modest intensities of the NIR dressing field, the XUV-induced photoionization lines are split into a sequence of peaks due to the emission or absorption of several additional infrared photons. We observed a plateau-shaped envelope of the resulting sequence of sidebands that broadens with increasing intensity of the NIR dressing field. All individual lines of the nonlinear two-color ionization process are Stark-shifted, reflecting the effective intensity of the NIR field. The intensity-dependent cut-off energies of the sideband plateau are in good agreement with a classical model. The detailed structure of the two-color spectra, including the formation of individual sidebands, the Stark shifts and the contributions beyond the classical cut-off, however, requires a fully quantum mechanical description, as is demonstrated with time-dependent quantum calculations in single-active electron approximation.

Collaboration


Dive into the S. Düsterer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Y. H. Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge