Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. E. Sharapov is active.

Publication


Featured researches published by S. E. Sharapov.


Nuclear Fusion | 2007

Chapter 5: Physics of energetic ions

A. Fasoli; C. Gormenzano; H. L. Berk; Boris N. Breizman; S. Briguglio; D. S. Darrow; N.N. Gorelenkov; W.W. Heidbrink; Andre Jaun; S. V. Konovalov; R. Nazikian; Jean-Marie Noterdaeme; S. E. Sharapov; K. Shinohara; D. Testa; Kenji Tobita; Y. Todo; G. Vlad; F. Zonca

This chapter reviews the progress accomplished since the redaction of the first ITER Physics Basis (1999 Nucl. Fusion 39 2137-664) in the field of energetic ion physics and its possible impact on burning plasma regimes. New schemes to create energetic ions simulating the fusion-produced alphas are introduced, accessing experimental conditions of direct relevance for burning plasmas, in terms of the Alfvenic Mach number and of the normalised pressure gradient of the energetic ions, though orbit characteristics and size cannot always match those of ITER. Based on the experimental and theoretical knowledge of the effects of the toroidal magnetic field ripple on direct fast ion losses, ferritic inserts in ITER are expected to provide a significant reduction of ripple alpha losses in reversed shear configurations. The nonlinear fast ion interaction with kink and tearing modes is qualitatively understood, but quantitative predictions are missing, particularly for the stabilisation of sawteeth by fast particles that can trigger neoclassical tearing modes. A large database on the linear stability properties of the modes interacting with energetic ions, such as the Alfven eigenmode has been constructed. Comparisons between theoretical predictions and experimental measurements of mode structures and drive/damping rates approach a satisfactory degree of consistency, though systematic measurements and theory comparisons of damping and drive of intermediate and high mode numbers, the most relevant for ITER, still need to be performed. The nonlinear behaviour of Alfven eigenmodes close to marginal stability is well characterized theoretically and experimentally, which gives the opportunity to extract some information on the particle phase space distribution from the measured instability spectral features. Much less data exists for strongly unstable scenarios, characterised by nonlinear dynamical processes leading to energetic ion redistribution and losses, and identified in nonlinear numerical simulations of Alfven eigenmodes and energetic particle modes. Comparisons with theoretical and numerical analyses are needed to assess the potential implications of these regimes on burning plasma scenarios, including in the presence of a large number of modes simultaneously driven unstable by the fast ions.


Nuclear Fusion | 1999

High fusion performance from deuterium-tritium plasmas in JET

M. Keilhacker; A. Gibson; C. Gormezano; P. Lomas; P.R. Thomas; M.L. Watkins; P. Andrew; B. Balet; D. Borba; C. Challis; I. Coffey; G.A. Cottrell; H.P.L. de Esch; N. Deliyanakis; A. Fasoli; C. Gowers; H.Y. Guo; G. Huysmans; T.T.C. Jones; W. Kerner; R. König; M.J. Loughlin; A. Maas; F.B. Marcus; M. F. F. Nave; F. Rimini; G. Sadler; S. E. Sharapov; G. Sips; P. Smeulders

High fusion power experiments using DT mixtures in ELM-free H mode and optimized shear regimes in JET are reported. A fusion power of 16.1 MW has been produced in an ELM-free H mode at 4.2 MA/3.6 T. The transient value of the fusion amplification factor was 0.95±0.17, consistent with the high value of nDT(0)τEdiaTi(0) = 8.7 × 1020±20% m-3 s keV, and was maintained for about half an energy confinement time until excessive edge pressure gradients resulted in discharge termination by MHD instabilities. The ratio of DD to DT fusion powers (from separate but otherwise similar discharges) showed the expected factor of 210, validating DD projections of DT performance for similar pressure profiles and good plasma mixture control, which was achieved by loading the vessel walls with the appropriate DT mix. Magnetic fluctuation spectra showed no evidence of Alfvenic instabilities driven by alpha particles, in agreement with theoretical model calculations. Alpha particle heating has been unambiguously observed, its effect being separated successfully from possible isotope effects on energy confinement by varying the tritium concentration in otherwise similar discharges. The scan showed that there was no, or at most a very weak, isotope effect on the energy confinement time. The highest electron temperature was clearly correlated with the maximum alpha particle heating power and the optimum DT mixture; the maximum increase was 1.3±0.23 keV with 1.3 MW of alpha particle heating power, consistent with classical expectations for alpha particle confinement and heating. In the optimized shear regime, clear internal transport barriers were established for the first time in DT, with a power similar to that required in DD. The ion thermal conductivity in the plasma core approached neoclassical levels. Real time power control maintained the plasma core close to limits set by pressure gradient driven MHD instabilities, allowing 8.2 MW of DT fusion power with nDT(0)τEdiaTi(0) ≈ 1021 m-3 s keV, even though full optimization was not possible within the imposed neutron budget. In addition, quasi-steady-state discharges with simultaneous internal and edge transport barriers have been produced with high confinement and a fusion power of up to 7 MW; these double barrier discharges show a great potential for steady state operation.


Nuclear Fusion | 2002

gamma-ray diagnostics of energetic ions in JET

Vasily Kiptily; F. E. Cecil; O.N. Jarvis; M. Mantsinen; S. E. Sharapov; L. Bertalot; S. Conroy; L. C. Ingesson; Thomas Johnson; K. D. Lawson; S. Popovichev

This paper reports recent progress in the field of γ-ray diagnosis of fast ions in the JET tokamak. The γ-rays, born in nuclear reactions between fast ions and main plasma impurities and/or plasma fuel ions, are analysed with a new modelling tool (the GAMMOD code) that has been developed for a quantitative analysis of the measured γ-ray energy spectra. The analysis of the γ-ray energy spectra identifies the different fast ions giving rise to the γ-ray emission and assesses the effective tail temperatures and relative concentrations of these fast ions. This assessment is possible, since the excitation functions for the different nuclear reactions are well established and exhibit a threshold or/and a resonant nature. The capabilities of the γ-ray spectral analysis are illustrated with the examples from the recent γ-ray diagnostic measurements of 4He, 3He, deuterium and hydrogen ions accelerated by ion-cyclotron resonance frequency heating in JET. Simultaneous measurements of several fast ion species, including highly energetic α-particles, are demonstrated. In addition to the γ-spectroscopy, tomographic reconstructions of the radial profile of the γ-ray emission are performed using the JET neutron profile monitor, thus providing direct measurements of the radial profiles of fast ions in JET.


Physics of Plasmas | 2003

Theory of Alfvén eigenmodes in shear reversed plasmas

Boris N. Breizman; H. L. Berk; M. S. Pekker; S. D. Pinches; S. E. Sharapov

Plasma configurations with shear reversal are prone to the excitation of unusual Alfven eigenmodes by energetic particles. These modes exhibit a quasiperiodic pattern of predominantly upward frequency sweeping (Alfven cascades) as the safety factor q changes in time. This work presents a theory that employs two complementary mechanisms for establishing Alfven cascades: (1) a nonstandard adiabatic response of energetic particles with large orbits and (2) toroidal magnetohydrodynamic effects that are second-order in inverse aspect ratio. The developed theory explains the transition from Alfven cascades to the toroidicity induced Alfven eigenmodes (TAEs), including modifications of the TAEs themselves near the shear reversal point.


Physics of Plasmas | 2005

Plasma pressure effect on Alfvén cascade eigenmodes

Boris N. Breizman; M. S. Pekker; S. E. Sharapov; Jet Efda Contributors

Tokamak plasmas with reversed magnetic shear are prone to the excitation of Alfven cascade (AC) eigenmodes by energetic particles. These modes exhibit a quasiperiodic pattern of predominantly upward frequency sweeping. Observations also reveal that the AC spectral lines sometimes bend at low frequencies, which is a significant deviation from the shear Alfven wave dispersion relation. This paper shows that the underlying reasons for such bending are the finite pressure of the plasma and the geodesic curvature that precludes shear Alfven perturbations from being strictly incompressible. In addition to the geodesic effect, there are two other pressure effects on shear Alfven waves, which are the convection in the presence of an equilibrium pressure gradient and the toroidicity-induced coupling between shear Alfven waves and acoustic modes. An analytical treatment of the problem enables a parametric comparison of all three mechanisms. The key distinction between the geodesic compressibility and the acoustic c...


Physics of Plasmas | 2002

Alfvén wave cascades in a tokamak

S. E. Sharapov; B. Alper; H. L. Berk; D. Borba; B. N. Breizman; C. Challis; A. Fasoli; N. Hawkes; T. C. Hender; J. Mailloux; S. D. Pinches; D. Testa

Experiments designed for generating internal transport barriers in the plasmas of the Joint European Torus [JET, P. H. Rebut et al., Proceedings of the 10th International Conference, Plasma Physics and Controlled Nuclear Fusion, London (International Atomic Energy Agency, Vienna, 1985), Vol. I, p. 11] reveal cascades of Alfven perturbations with predominantly upward frequency sweeping. These experiments are characterized by a hollow plasma current profile, created by lower hybrid heating and current drive before the main heating power phase. The cascades are driven by ions accelerated with ion cyclotron resonance heating (ICRH). Each cascade consists of many modes with different toroidal mode numbers and different frequencies. The toroidal mode numbers vary from n=1 to n=6. The frequency starts from 20 to 90 kHz and increases up to the frequency range of toroidal Alfven eigenmodes. In the framework of ideal magnetohydrodynamics (MHD) model, a close correlation is found between the time evolution of the Alfven cascades and the evolution of the Alfven continuum frequency at the point of zero magnetic shear. This correlation facilitates the study of the time evolution of both the Alfven continuum and the safety factor, q(r), at the point of zero magnetic shear and makes it possible to use Alfven spectroscopy for studying q(r). Modeling shows that the Alfven cascade occurs when the Alfven continuum frequency has a maximum at the zero shear point. Interpretation of the Alfven cascades is given in terms of a novel-type of energetic particle mode localized at the point where q(r) has a minimum. This interpretation explains the key experimental observations: simultaneous generation of many modes, preferred direction of frequency sweeping, and the absence of strong continuum damping.


Plasma Physics and Controlled Fusion | 2003

Edge localized mode physics and operational aspects in tokamaks

M. Becoulet; G. Huysmans; Y. Sarazin; X. Garbet; Ph. Ghendrih; F. Rimini; E. Joffrin; X. Litaudon; P. Monier-Garbet; J-M Ané; P.R. Thomas; A. Grosman; V. Parail; H. R. Wilson; P. Lomas; P. deVries; K.-D. Zastrow; Guy Matthews; J. Lönnroth; S. Gerasimov; S. E. Sharapov; M. Gryaznevich; G F Counsell; A. Kirk; M. Valovic; R.J. Buttery; A. Loarte; G. Saibene; R. Sartori; A.W. Leonard

Recent progress in experimental and theoretical studies of edge localized mode (ELM) physics is reviewed for the reactor relevant plasma regimes, namely the high confinement regimes, that is, H-modes and advanced scenarios.Theoretical approaches to ELM physics, from a linear ideal magnetohydrodynamic (MHD) stability analysis to non-linear transport models with ELMs are discussed with respect to experimental observations, in particular the fast collapse of pedestal pressure profiles, magnetic measurements and scrape-off layer transport during ELMs.High confinement regimes with different types of ELMs are addressed in this paper in the context of development of operational scenarios for ITER. The key parameters that have been identified at present to reduce the energy losses in Type I ELMs are operation at high density, high edge magnetic shear and high triangularity. However, according to the present experimental scaling for the energy losses in Type I ELMs, the extrapolation of such regimes for ITER leads to unacceptably large heat loads on the divertor target plates exceeding the material limits. High confinement H-mode scenarios at high triangularity and high density with small ELMs (Type II), mixed regimes (Type II and Type I) and combined advanced regimes at high βp are discussed for present-day tokamaks. The optimum combination of high confinement and small MHD activity at the edge in Type II ELM scenarios is of interest to ITER. However, to date, these regimes have been achieved in a rather narrow operational window and far from ITER parameters in terms of collisionality, edge safety factor and βp.The compatibility of the alternative internal transport barrier (ITB) scenario with edge pedestal formation and ELMs is also addressed. Edge physics issues related to the possible combination of small benign ELMs (Type III, Type II ELMs, quiescent double barrier) and high performance ITBs are discussed for present-day experiments (JET, JT-60U, DIII-D) in terms of their relevance for ITER. Successful plasma edge control, at high triangularity (~0.5) and high density (~0.7nGR), in ITB scenarios in JET is reported.Active control of ELMs by edge current, pellet injection, impurities and external magnetic perturbations creating an ergodic zone localized at the separatrix are discussed for present-day experiments and from the perspective of future reactors.


Nuclear Fusion | 2010

Measurements of fast ions and their interactions with MHD activity using neutron emission spectroscopy

C. Hellesen; M. Gatu Johnson; E. Andersson Sundén; S. Conroy; G. Ericsson; Jacob Eriksson; G. Gorini; Thomas Johnson; V. Kiptily; S. D. Pinches; S. E. Sharapov; Henrik Sjöstrand; M. Nocente; M. Tardocchi; M. Weiszflog

Ion cyclotron radio frequency (ICRF) heating can produce fast ion populations with energies reaching up to several megaelectronvolts. Here, we present unique measurements of fast ion distributions from an experiment with 3rd harmonic ICRF heating on deuterium beams using neutron emission spectroscopy (NES). From the experiment, very high DD neutron rates were observed, using only modest external heating powers. This was attributed to acceleration of deuterium beam ions to energies up to about 2-3 MeV, where the DD reactivity is on a par with that of the DT reaction. The high neutron rates allowed for observations of changes in the fast deuterium energy distribution on a time scale of 50 ms. Clear correlations were seen between fast deuterium ions in different energy ranges and magnetohydrodynamic activities, such as monster sawteeth and toroidal Alfven eigen modes (TAE). Specifically, NES data showed that the number of deuterons in the region between 1 and 1.5 MeV were decaying significantly during strong TAE activity, while ions with lower energies around 500 keV were not affected. This was attributed to resonances with the TAE modes.


Nuclear Fusion | 2003

Internal transport barrier triggering by rational magnetic flux surfaces in tokamaks

E. Joffrin; C. Challis; G. D. Conway; X. Garbet; A. Gude; S. Günter; N. C. Hawkes; T. C. Hender; D. Howell; G. Huysmans; E. Lazzaro; P. Maget; M. Marachek; A. G. Peeters; S. D. Pinches; S. E. Sharapov; Jet Efda Contributors

The formation of internal transport barriers (ITBs) has been experimentally associated with the presence of rational q surfaces in both JET and ASDEX Upgrade. The triggering mechanisms are related to the occurrence of magneto-hydrodynamic (MHD) instabilities such as mode coupling and fishbone activity. These events could locally modify the poloidal velocity and increase transiently the shearing rate to values comparable with the linear growth rate of ion temperature gradient modes. For JET reversed magnetic shear scenarios, ITB emergence occurs preferentially when the minimum q reaches an integral value. In this case, transport effects localized in the vicinity of zero magnetic shear and close to rational q values may be at the origin of ITB formation. The role of rational q surfaces in ITB triggering stresses the importance of q profile control for an advanced tokamak scenario and could assist in substantially lowering the access power to these scenarios in next step facilities.


Physics of Plasmas | 2001

Modeling of diamagnetic stabilization of ideal magnetohydrodynamic instabilities associated with the transport barrier

G. Huysmans; S. E. Sharapov; A. B. Mikhailovskii; W. Kerner

A new code, MISHKA-D (Drift MHD), has been developed as an extension of the ideal magnetohydrodynamics (MHD) code MISHKA-1 in order to investigate the finite gyroradius stabilizing effect of ion diamagnetic drift frequency, ω*i, on linear ideal MHD eigenmodes in tokamaks in general toroidal geometry. The MISHKA-D code gives a self-consistent computation of both stable and unstable eigenmodes with eigenvalues |γ|≅ω*i in plasmas with strong radial variation in the ion diamagnetic frequency. Test results of the MISHKA-D code show good agreement with the analytically obtained ω*i spectrum and stability limits of the internal kink mode, n/m=1/1, used as a benchmark case. Finite-n ballooning and low-n kink (peeling) modes in the edge transport barrier just inside the separatrix are studied for high confinement mode (H-mode) plasmas with the ω*i effect included. The ion diamagnetic stabilization of the ballooning modes is found to be most effective for narrow edge pedestals. For low enough plasma density the ω*i...

Collaboration


Dive into the S. E. Sharapov's collaboration.

Top Co-Authors

Avatar

M. Mantsinen

Helsinki University of Technology

View shared research outputs
Top Co-Authors

Avatar

Thomas Johnson

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boris N. Breizman

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

F. Nabais

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

H. L. Berk

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

S. Conroy

Swedish Research Council

View shared research outputs
Top Co-Authors

Avatar

Jet-Efda Contributors

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

A. Fasoli

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge