Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. E. Speidel is active.

Publication


Featured researches published by S. E. Speidel.


Journal of Animal Science | 2010

Genetic diversity and population structure of American Red Angus cattle.

G. C. Márquez; S. E. Speidel; R. M. Enns; Dorian J. Garrick

The objective of this study was to characterize the population structure and genetic diversity of registered American Red Angus cattle. Inbreeding and average relationship coefficients, effective population size, effective number of founders, and effective number of herds supplying grandparents to the population were calculated from the recorded pedigree. Inbreeding in 1960 was 10.7% and decreased until 1974 at a rate of 0.2% per year, whereas in 1975 inbreeding was 3.2% and increased until 2005 at a rate of 0.02% per year. The numerator relationship coefficients of the 10 individual paternal grandsires (PGS; sires of sires), paternal granddams (PGD; dams of sires), maternal grandsires (MGS; sires of dams), and maternal granddams (MGD; dams of dams) that had the greatest number of registered grandprogeny, with all other registered animals, increased with their birth year from 1960 on. Average numerator relationships of these with all other PGS, PGD, MGS, MGD, bulls, and sires were greater for paternal (PGS, PGD) than maternal (MGS, MGD) pathways. The effective population size was 445, with 649 effective founders. The effective numbers of herds supplying PGS, PGD, MGS, and MGD were 435, 369, 453, and 459, respectively. Inbreeding is at a low level and the effective population size is large. The effective number of founders and effective number of herds supplying grandparents is small in relation to the total number of animals and herds, indicating the disproportionate influence of a few founders and herds on the genetics of the breed. The calculated parameters indicate satisfactory genetic diversity in American Red Angus cattle.


Journal of Animal Science | 2011

Genetic parameters for intramuscular fat percentage, marbling score, scrotal circumference, and heifer pregnancy in Red Angus cattle

C. M. McAllister; S. E. Speidel; D. H. Crews; R. M. Enns

Selection criteria for yearling bulls commonly include indicators of fertility and carcass merit, such as scrotal circumference (SC) and intramuscular fat percentage (IMF). Genetic correlation estimates between ultrasound traits such as IMF and carcass marbling score (MS) with fertility traits SC and heifer pregnancy (HP) have not been reported. Therefore, the objective of this study was to estimate the genetic parameters among the indicator traits IMF and SC, and the economically relevant traits MS and HP. Records for IMF (n=73,051), MS (n=15,260), SC (n=43,487), and HP (n=37,802) were obtained from the Red Angus Association of America, and a 4-generation ancestral pedigree (n=10,460) was constructed from the 8,915 sires represented in the data. (Co)variance components were estimated using a multivariate sire model and average information REML to obtain estimates of heritability and genetic correlations. Fixed effects included contemporary group and the linear effect of age at measurement for all traits, and an additional effect of age of dam for both HP and SC. The random effect of sire was included to estimate additive genetic effects, which were assumed to be continuous for IMF, MS, and SC, but a probit threshold link function was fitted for HP. Generally moderate heritability estimates of 0.29 ± 0.01, 0.35 ± 0.06, 0.32 ± 0.02, and 0.17 ± 0.01 were obtained for IMF, MS, SC, and HP on the underlying scale, respectively. The confidence interval for the estimated genetic correlation between MS and HP (0.10 ± 0.15) included zero, suggesting a negligible genetic association. The genetic correlation between MS and IMF was high (0.80 ± 0.05), but the estimate for HP and SC (0.05 ± 0.09) was near zero, as were the estimated genetic correlations of SC with MS (0.01 ± 0.08) and IMF (0.05 ± 0.06), and for HP with IMF (0.13 ± 0.09). These results suggest that concomitant selection for increased fertility and carcass merit would not be antagonistic.


Journal of Animal Science | 2015

Optimum measurement period for evaluating feed intake traits in beef cattle

M. M. Culbertson; S. E. Speidel; R. K. Peel; R. R. Cockrum; M. G. Thomas; R. M. Enns

The Beef Improvement Federation recommends residual feed intake (RFI) be calculated from 70-d tests preceded by a 21-d adjustment period. Individual animal feed intake and gain measurements are expensive and time consuming, which limits the number of animals available for national genetic evaluation of feed intake. If a shorter test period of comparable accuracy could be used, the cost would decrease and more animals could be tested annually. The objective of this study was to determine if data from shortened tests is equally as predictive of average daily DMI (ADMI) and RFI values from 70-d tests. Feed intake and weight measures were collected after weaning from Bos taurus bulls, steers, and heifers (n = 612) during four 70-d performance tests. For each individual, ADMI and RFI were calculated. Residual feed intake was calculated by regressing ADMI on metabolic midweight (MMWT) and ADG with the effect of breed included where appropriate. Based on four 70-d intake tests, ADMI, RFI, ADG, and MMWT were evaluated using shortened test lengths in a post hoc analysis where shortened test lengths were imposed on the full-period tests. The ADMI, RFI, ADG, and MMWT values from the full 70-d test were regressed on ADMI, RFI, ADG, and MMWT values resulting from the constructed shorter data subsets. The 8 subsets ranged from 14 to 56 d in length. The fixed effects of test, breed, animals origin, and sex were included in each comparison for ADMI, ADG, and MMWT. Estimates for regression coefficients of ADMI values from a full test on various subsets ranged from 0.63 to 1.02. Likewise, estimated coefficients obtained from the regression of full test RFI, ADG, and MMWT values on subsets ranged from 0.50 to 1.00, 0.09 to 0.85, and 0.48 to 1.02, respectively. We conclude that ADMI values from a 42-d test ( < 0.0001) and RFI values from a 56-d test (P < 0.0001) adequately predict ADMI and RFI when compared to a 70-d test. These results suggest that testing periods of 42 d for determining ADMI and 56 d for RFI could ultimately reduce testing costs and result in collection of data on a larger number of animals per year, in turn resulting in more data for genetic evaluation.


Journal of Animal Science | 2009

Reducing bias in maintenance energy expected progeny difference by accounting for selection on weaning and yearling weights

J. L. Williams; Dorian J. Garrick; S. E. Speidel

Maintenance energy requirements of cattle can be predicted from published equations utilizing metabolic BW and milk production potential. Metabolic BW is a function of BW at a constant fat percentage or BCS. Pedigree and performance records can be used in random regression models to predict genetic merit for metabolic BW and milk production potentials. The purpose of this study was to present a methodology for predicting mature cow maintenance energy EPD using mature cow BW and BCS and accounting for prior selection of replacement females at weaning and yearling ages. Variance components were obtained for direct and maternal effects on weaning weight, direct effects on postweaning BW gain, and direct coefficients for random regression on mature weights (MW) adjusted for BCS. These BW were transformed into metabolic BW by taking BW to the power of 0.75, variance components were estimated for metabolic BW, and were then used to predict breeding values from which cow maintenance energy EPD could be derived. Data used in this analysis were obtained from the Red Angus Association of America and limited to herds with MW and corresponding BCS observations. The data set included 52,338 BW records on 21,103 individuals. Weaning and yearling contemporaries to those with MW observations, but with no MW records themselves, were included to account for selection occurring before maturity. Heritability estimates for weaning weight direct, weaning weight maternal, and postweaning BW gain were 0.18 +/- 0.02, 0.16 +/- 0.02, and 0.18 +/- 0.02, respectively. Mature BW observed at 2, 3, 4, 5, and 6 yr of age had heritability estimates of 0.45 +/- 0.03, 0.44 +/- 0.03, 0.49 +/- 0.03, 0.66 +/- 0.04, and 0.62 +/- 0.05, respectively. Correlations between weaning weight direct and MW ranged from 0.65 +/- 0.07 to 0.82 +/- 0.04, and correlations between MW at different ages ranged from 0.95 +/- 0.03 to 0.99 +/- 0.01. The genetic correlations between postweaning BW gain and MW ranged from 0.48 +/- 0.06 to 0.59 +/- 0.06. The 15-yr genetic increase in metabolic BW was 3.6 kg(0.75), greater than the value of 0.23 kg(0.75) obtained from the same data ignoring weaning and yearling contemporaries with unobserved MW, the approach currently used in the derivation of cow maintenance EPD published by the Red Angus Association of America.


Journal of Animal Science | 2016

Random regression models for the prediction of days to weight, ultrasound rib eye area, and ultrasound back fat depth in beef cattle

S. E. Speidel; R. K. Peel; D. H. Crews; R. M. Enns

Genetic evaluation research designed to reduce the required days to a specified end point has received very little attention in pertinent scientific literature, given that its economic importance was first discussed in 1957. There are many production scenarios in todays beef industry, making a prediction for the required number of days to a single end point a suboptimal option. Random regression is an attractive alternative to calculate days to weight (DTW), days to ultrasound back fat (DTUBF), and days to ultrasound rib eye area (DTUREA) genetic predictions that could overcome weaknesses of a single end point prediction. The objective of this study was to develop random regression approaches for the prediction of the DTW, DTUREA, and DTUBF. Data were obtained from the Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB, Canada. Data consisted of records on 1,324 feedlot cattle spanning 1999 to 2007. Individual animals averaged 5.77 observations with weights, ultrasound rib eye area (UREA), ultrasound back fat depth (UBF), and ages ranging from 293 to 863 kg, 73.39 to 129.54 cm, 1.53 to 30.47 mm, and 276 to 519 d, respectively. Random regression models using Legendre polynomials were used to regress age of the individual on weight, UREA, and UBF. Fixed effects in the model included an overall fixed regression of age on end point (weight, UREA, and UBF) nested within breed to account for the mean relationship between age and weight as well as a contemporary group effect consisting of breed of the animal (Angus, Charolais, and Charolais sired), feedlot pen, and year of measure. Likelihood ratio tests were used to determine the appropriate random polynomial order. Use of the quadratic polynomial did not account for any additional genetic variation in days for DTW ( > 0.11), for DTUREA ( > 0.18), and for DTUBF ( > 0.20) when compared with the linear random polynomial. Heritability estimates from the linear random regression for DTW ranged from 0.54 to 0.74, corresponding to end points of 293 and 863 kg, respectively. Heritability for DTUREA ranged from 0.51 to 0.34 and for DTUBF ranged from 0.55 to 0.37. These estimates correspond to UREA end points of 35 and 125 cm and UBF end points of 1.53 and 30 mm, respectively. This range of heritability shows DTW, DTUREA, and DTUBF to be highly heritable and indicates that selection pressure aimed at reducing the number of days to reach a finish weight end point can result in genetic change given sufficient data.


Journal of Animal Science | 2016

Genetic parameters estimated at receiving for circulating cortisol, immunoglobulin G, interleukin 8, and incidence of bovine respiratory disease in feedlot beef steers.

R. R. Cockrum; S. E. Speidel; J. L. Salak-Johnson; Christopher C. L. Chase; R. K. Peel; Robert L. Weaber; G. H. Loneagan; J. J. Wagner; P. Boddhireddy; M. G. Thomas; K. Prayaga; S. K. DeNise; R. M. Enns

ABSTRACT Bovine respiratory disease complex (i.e., shipping fever and bacterial bronchopneumonia) is a multifaceted respiratory illness influenced by numerous environmental factors and microorganisms. Bovine respiratory disease (BRD) is just one component of BRD complex. Because BRD is moderately heritable, it may be possible to reduce the incidence of BRD through genetic selection. The objectives of this study were to determine the heritability and associative genetic relationships among immune system traits (i.e., cortisol, total IgG, IgG isotypes, and IL-8) in cattle monitored for BRD incidence. At an average of 83 d after weaning (219 d age and mean = 221.7 kg [SD 4.34]), crossbred Bos taurus steer calves (n = 2,869) were received at a commercial feedlot in southeastern Colorado over a 2-yr period. At receiving, jugular blood samples were collected at 212 (yr 1) and 226 d (yr 2) of age for immune trait analyses. The BRD phenotype was defined as a binomial variable (0 = no and 1 = yes) and compared with immune system traits measured at receiving (prior to illness onset). An animal identified as BRD positive exhibited ≥ 2 clinical signs (i.e., eye or nasal discharge, cough, lethargy, rapid breathing, acute interstitial pneumonia, or acute upper respiratory syndrome and/or a rectal temperature > 39.7°C). Heritability and genetic correlation estimates for categorical variable BRD, cortisol, IgG, IgG1, IgG2, and IL-8 were estimated from a sire model using ASREML. Heritability estimates were low to moderate for BRD (0.17 ± 0.08), cortisol (0.13 ± 0.05), IgG (0.15 ± 0.05), IgG1 (0.11 ± 0.05), IgG2 (0.24 ± 0.06), and IL-8 (0.30 ± 0.06). A moderate negative genetic correlation was determined between BRD and cortisol (rg = −0.19 ± 0.32). Moderate positive correlations were found between BRD with IgG (0.42 ± 0.28), IgG1 (0.36 ± 0.32), and IL-8 (rg = 0.26 ± 0.26). Variation in the BRD phenotype and immune system traits suggested herd health improvement may be achieved through genetic selection.


Journal of Animal Science | 2018

Genetic parameters for fertility and production traits in Red Angus cattle

R. J. Boldt; S. E. Speidel; Milton G. Thomas; R. Mark Enns

Heifer pregnancy (HPG) and Stayability (STAY) are female reproductive traits that have EPD reported by the Red Angus Association of America. Challenges arise when making genetic predictions for these traits. Specifically, HPG and STAY phenotypes can only be collected on females retained in the breeding herd and have low heritability estimates. Additionally, STAY is measured late in an animals life. The objective of this research was to investigate the genetic relationships between HPG or STAY and 13 other traits, which included measurements of growth, carcass, ultrasound, and scrotal circumference. For STAY relationships between mature weight (MW), body condition score (BCS), teat score (TS), and udder suspension score (US) were also evaluated. Data from 142,146 and 164,235 animals were used in the analyses for HPG and STAY, respectively. Genetic relationships were investigated using a series of 2 trait animal models and a REML procedure. In all analyses, the appropriate contemporary groups were included as a fixed effect, and direct genetic as a random effect. Additional fixed effects included as follows: sex for weight, carcass and ultrasound traits, age of dam for weight traits, and age of measurement for ultrasound, carcass, BCS, udder traits, and MW. Maternal genetic effects for preweaning gain (Pre-WG), weaning weight (WW), and yearling weight (YW) were also modeled. Permanent environmental effects of the dam were modeled for the traits Pre-WG and WW. Permanent environment of the individual for the traits MW, BCS, TS, and US was also included. Heritability estimates were 0.12 ± 0.01 and 0.10 ± 0.01 for HPG and STAY, respectively. Heritability estimates for direct genetic effects of production traits were moderate to high in magnitude, maternal heritability estimates were low, and permanent environmental effects accounted for 0.00 to 0.18 of the total variation. The strongest genetic correlations were those among Pre-WGD (0.24 ± 0.08), WWD (0.18 ± 0.08), YWD (0.20 ± 0.07), ultrasound rib eye area direct (0.16 ± 0.08), and ultrasound backfat direct (0.14 ± 0.08) and HPG. The highest genetic correlations were between STAY and WWM (0.54 ± 0.05), YWM (0.36 ± 0.07), backfat (0.53 ± 0.20), marbling score (0.40 ± 0.20), UREA (0.19 ± 0.07), ultrasound backfat (0.37 ± 0.07), TS (0.30 ± 0.11), and US (0.23 ± 0.11). Relationships between HPG or STAY and other traits were minimal. These results suggest that genetic relationships exist between HPG or STAY and other more densely recorded traits.


Journal of Animal Science | 2018

Evaluation of moderate to high elevation effects on pulmonary arterial pressure measures in Angus cattle1

Rachel C Pauling; S. E. Speidel; Milton G. Thomas; Timothy N. Holt; Richard Mark Enns

Altitude-induced pulmonary hypertension is a disease once thought to only occur at extremely high elevations (> 1,600 m), but recently it has been observed at moderate elevations of 1200 to 1600 m. Pulmonary arterial pressure (PAP) has been used as an indicator of tolerance to high altitude in mountainous beef production systems for over 30 years. The trait is typically measured on yearling bulls and heifers with values ≤ 41 mm Hg being favorable. These observations were historically only considered valid when they were recorded at elevations ≥ 1,600 m; however, if observations from lower (i.e., moderate) elevations were reliable indicators, a greater number of cattle records could be used in genetic improvement programs for high altitude beef systems. The objectives of this study were to evaluate the relationship between PAP and elevation, as well as to determine if PAP measures obtained at moderate elevations (ME) less than 1,600 m have a genetic relationship with PAP observations obtained at high elevations (HE) 1,600 m or greater. Elevation and PAP data from purebred Angus cattle (n = 14,665) from 349 contemporary groups were used in the analyses. Elevation and PAP averaged 1,887 ± 1.8 m and 43.0 ± 0.1 mm Hg, respectively. A univariate model containing the effects of sex, age, elevation category (HE vs ME), elevation (continuous), elevation category by elevation interaction along with a random direct genetic effect was utilized to determine the relationship between PAP and elevation. In this model, all main effects were found to be significant contributors of variation in PAP (P < 0.001). The interaction between elevation category and elevation was not a significant contributor to variability of PAP (P > 0.05). A bivariate animal model was then used to evaluate the relationship between PAP observations obtained between HE and ME groups. Heritability estimates for these two groups were 0.34 0.03 and 0.29 0.09, respectively, and their genetic correlation was 0.83 0.15. Even though this is a strong genetic relationship, results of this study support the hypothesis that PAP observations collected at HE and ME are not perfectly, genetically related. Results suggest that PAP measures collected from 1,219 to 1,600 m may be useful as a correlated trait in a multi-trait genetic evaluation to produce EPD useful for selection of animals with reduced susceptibility to pulmonary hypertension.


Tropical Animal Health and Production | 2018

Polymorphisms within the prolactin and growth hormone/insulin-like growth factor-1 functional pathways associated with fertility traits in Holstein cows raised in a hot-humid climate

José Clemente Leyva-Corona; Javier Reyna-Granados; Ricardo Zamorano-Algandar; Miguel A. Sanchez-Castro; Milton G. Thomas; R. Mark Enns; S. E. Speidel; Juan F. Medrano; Gonzalo Rincon; Pablo Luna-Nevárez

Prolactin (PRL), growth hormone (GH), and insulin-like growth factor-1 (IGF-1) are in hormone-response pathways involved in energy metabolism during thermoregulation processes in cattle. Objective herein was to study the association between single nucleotide polymorphisms (SNP) within genes of the PRL and GH/IGF-1 pathways with fertility traits such as services per conception (SPC) and days open (DO) in Holstein cattle lactating under a hot-humid climate. Ambient temperature and relative humidity were used to calculate the temperature-humidity index (THI) which revealed that the cows were exposed to heat stress conditions from June to November of 2012 in southern Sonora, Mexico. Individual blood samples from all cows were collected, spotted on FTA cards, and used to genotype a 179 tag SNP panel within 44 genes from the PRL and GH/IGF-1 pathways. The associative analyses among SNP genotypes and fertility traits were performed using mixed-effect models. Allele substitution effects were calculated using a regression model that included the genotype term as covariate. Single-SNP association analyses indicated that eight SNP within the genes IGF-1, IGF-1R, IGFBP5, PAPPA1, PMCH, PRLR, SOCS5, and SSTR2 were associated with SPC (P < 0.05), whereas four SNP in the genes GHR, PAPPA2, PRLR, and SOCS4 were associated with DO (P < 0.05). In conclusion, SNP within genes of the PRL and GH/IGF-1 pathways resulted as predictors of reproductive phenotypes in heat-stressed Holstein cows, and these SNP are proposed as candidates for a marker-assisted selection program intended to improve fertility of dairy cattle raised in warm climates.


Journal of Animal Science | 2018

Genome-wide association study of Stayability and Heifer Pregnancy in Red Angus cattle

S. E. Speidel; B. A. Buckley; R. J. Boldt; R. M. Enns; J. W. Lee; Matthew L. Spangler; M. G. Thomas

Reproductive performance is the most important component of cattle production from the standpoint of economic sustainability of commercial beef enterprises. Heifer Pregnancy (HPG) and Stayability (STAY) genetic predictions are 2 selection tools published by the Red Angus Association of America (RAAA) to assist with improvements in reproductive performance. Given the importance of HPG and STAY to the profitability of commercial beef enterprises, the objective of this study was to identify QTL associated with both HPG and STAY in Red Angus cattle. A genome-wide association study (GWAS) was performed using deregressed HPG and STAY EBV, calculated using a single-trait animal model and a 3-generation pedigree with data from the Spring 2015 RAAA National Cattle Evaluation. Each individual animal possessed 74,659 SNP genotypes. Individual animals with a deregressed EBV reliability > 0.05 were merged with the genotype file and marker quality control was performed. Criteria for sifting genotypes consisted of removing those markers where any of the following were found: average call rate less than 0.85, minor allele frequency < 0.01, lack of Hardy-Weinberg equilibrium (P < 0.0001), or extreme linkage disequilibrium (r2 > 0.99). These criteria resulted in 2,664 animals with 62,807 SNP available for GWAS. Association studies were performed using a Bayes Cπ model in the BOLT software package. Marker significance was calculated as the posterior probability of inclusion (PPI), or the number of instances a specific marker was sampled divided by the total number of samples retained from the Markov chain Monte Carlo chains. Nine markers, with a PPI ≥ 3% were identified as QTL associated with HPG on BTA 1, 11, 13, 23, and 29. Twelve markers, with a PPI ≥ 75% were identified as QTL associated with STAY on BTA 6, 8, 9, 12, 15, 18, 22, and 23.

Collaboration


Dive into the S. E. Speidel's collaboration.

Top Co-Authors

Avatar

R. M. Enns

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

M. G. Thomas

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Timothy N. Holt

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

R. J. Boldt

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

X. Zeng

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Mark Enns

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

S. J. Coleman

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

N. F. Crawford

Colorado State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge