Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Eleonore Köhler is active.

Publication


Featured researches published by S. Eleonore Köhler.


Journal of Biological Chemistry | 2010

Glutamine synthetase in muscle is required for glutamine production during fasting and extrahepatic ammonia detoxification.

Youji He; Theodorus B. M. Hakvoort; S. Eleonore Köhler; Jacqueline L. M. Vermeulen; D. Rudi de Waart; Chiel C. de Theije; Gabrie A.M. Ten Have; Hans M.H. van Eijk; Cindy Kunne; W. T. Labruyere; Sander M. Houten; Milka Sokolovic; Jan M. Ruijter; Nicolaas E. P. Deutz; Wouter H. Lamers

The main endogenous source of glutamine is de novo synthesis in striated muscle via the enzyme glutamine synthetase (GS). The mice in which GS is selectively but completely eliminated from striated muscle with the Cre-loxP strategy (GS-KO/M mice) are, nevertheless, healthy and fertile. Compared with controls, the circulating concentration and net production of glutamine across the hindquarter were not different in fed GS-KO/M mice. Only a ∼3-fold higher escape of ammonia revealed the absence of GS in muscle. However, after 20 h of fasting, GS-KO/M mice were not able to mount the ∼4-fold increase in glutamine production across the hindquarter that was observed in control mice. Instead, muscle ammonia production was ∼5-fold higher than in control mice. The fasting-induced metabolic changes were transient and had returned to fed levels at 36 h of fasting. Glucose consumption and lactate and ketone-body production were similar in GS-KO/M and control mice. Challenging GS-KO/M and control mice with intravenous ammonia in stepwise increments revealed that normal muscle can detoxify ∼2.5 μmol ammonia/g muscle·h in a muscle GS-dependent manner, with simultaneous accumulation of urea, whereas GS-KO/M mice responded with accumulation of glutamine and other amino acids but not urea. These findings demonstrate that GS in muscle is dispensable in fed mice but plays a key role in mounting the adaptive response to fasting by transiently facilitating the production of glutamine. Furthermore, muscle GS contributes to ammonia detoxification and urea synthesis. These functions are apparently not vital as long as other organs function normally.


Journal of Applied Physiology | 2013

Characterization of the inflammatory and metabolic profile of adipose tissue in a mouse model of chronic hypoxia

Bram van den Borst; Annemie M. W. J. Schols; Chiel C. de Theije; Agnes W. Boots; S. Eleonore Köhler; Gijs H. Goossens; Harry R. Gosker

In both obesity and chronic obstructive pulmonary disease (COPD), altered oxygen tension in adipose tissue (AT) has been suggested to evoke AT dysfunction, subsequently contributing to metabolic complications. Studying the effects of chronic hypoxia on AT function will add to our understanding of the complex pathophysiology of alterations in AT inflammation, metabolism, and mass observed in both obesity and COPD. This study investigated the inflammatory and metabolic profile of AT after chronic hypoxia. Fifty-two-week-old C57Bl/6J mice were exposed to chronic hypoxia (8% O2) or normoxia for 21 days, after which AT and plasma were collected. Adipocyte size, AT gene expression of inflammatory and metabolic genes, AT macrophage density, and circulating adipokine concentrations were measured. Food intake and body weight decreased upon initiation of hypoxia. However, whereas food intake normalized after 10 days, lower body weight persisted. Chronic hypoxia markedly reduced AT mass and adipocyte size. AT macrophage density and expression of Emr1, Ccl2, Lep, and Tnf were decreased, whereas Serpine1 and Adipoq expression levels were increased after chronic hypoxia. Concomitantly, chronic hypoxia increased AT expression of regulators of oxidative metabolism and markers of mitochondrial function and lipolysis. Circulating IL-6 and PAI-1 concentrations were increased, and leptin concentration was decreased after chronic hypoxia. Chronic hypoxia is associated with decreased rather than increased AT inflammation, and markedly decreased fat mass and adipocyte size. Furthermore, our data indicate that chronic hypoxia is accompanied by significant alterations in AT metabolic gene expression, pointing toward an enhanced AT metabolic rate.


Nutrition & Metabolism | 2011

Dietary cholesterol, female gender and n-3 fatty acid deficiency are more important factors in the development of non-alcoholic fatty liver disease than the saturation index of the fat

Tine M. Comhair; Sonia C. Garcia Caraballo; Cornelis H.C. Dejong; Wouter H. Lamers; S. Eleonore Köhler

BackgroundThe central feature of NAFLD is a disturbed fatty-acid metabolism with hepatic lipid accumulation. However, the factors that determine the severity of NAFLD, including the role of nutrition, gender, and plasma lipid levels, remain to be determined.MethodsHigh-fat diets (42 en% fat), containing 0.2% cholesterol, were fed to male and female wild-type and hyperlipidemic APOE2ki C57BL/6J mice for three weeks. The fats were, in order of decreasing saturation, fractionated palm fat (fPF; ~95%), cocoa butter (CB; ~60%), olive oil (OO; ~15%), sunflower oil (SO; ~12%), and high-oleic-acid sunflower oil (hoSO; ~7%). Plasma and liver triglycerides (concentration and composition), liver inflammation (Ccl2, Cd68, Tnf-α mRNA), and infiltration of macrophages (Cd68, Cd11b immunohistochemistry) and neutrophils (Mpo) were quantified.ResultsAddition of cholesterol to a low-fat diet decreased plasma HDL and increased (V)LDL levels in APOE2ki mice. Plasma cholesterol levels in female, but not male APOE2ki mice correlated significantly with inflammation. Kupffer cells of inflamed livers were swollen. Wild-type mice refused the highly saturated fPF diet. The high-fat CB, OO, and SO diets induced hyperglycemia and a 2-fold increase in hepatic fat content in male, but not female wild-type mice (in females, hepatic fat content was similar to that in males fed a high-fat diet). All high-fat diets induced macrovesicular setatosis. APOE2ki mice were protected against high-fat diet-induced steatosis and hyperglycemia, except when fed a hoSO diet. This diet caused a 5-fold increase in liver triglyceride and mead-acid content, and an increased expression of lipogenic genes, suggesting a deficiency in poly-unsaturated fatty acids. Irrespective of the composition of the high-fat diet, oleic acid was the main triglyceride component of liver fat in wild-type and APOE2ki mouse livers. Liver inflammation was dependent on genotype (APOE2ki > wild type), gender (female > male), and cholesterol content (high > low) of the diet, but not on dietary fat composition.ConclusionsDietary cholesterol plays a determining, independent role in inflammation, especially in female mice. The fatty-acid saturation of the diet hardly affected hepatic steatosis or inflammation.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2013

Distinct responses of protein turnover regulatory pathways in hypoxia- and semistarvation-induced muscle atrophy

Chiel C. de Theije; Ramon Langen; Wouter H. Lamers; Annemie M. W. J. Schols; S. Eleonore Köhler

The balance of muscle protein synthesis and degradation determines skeletal muscle mass. We hypothesized that hypoxia-induced muscle atrophy and alterations in the regulation of muscle protein turnover include a hypoxia-specific component, in addition to the observed effects of reduction in food intake in response to hypoxia. Mice were subjected to normoxic, hypoxic (8% oxygen), or pair-fed conditions for 2, 4, and 21 days. Cell-autonomous effects of hypoxia on skeletal muscle were also assessed in differentiated C2C12 myotubes. Hypoxia induced an initial rapid loss of body and muscle weight, which remained decreased during chronic hypoxia and could only in part be explained by the hypoxia-induced reduction of food intake (semistarvation). Regulatory steps of protein synthesis (unfolded protein response and mammal target of rapamycin signaling) remained active in response to acute and sustained hypoxia but not to semistarvation. Activation of regulatory signals for protein degradation, including increased expression of Murf1, Atrogin-1, Bnip3, and Map1lc3b mRNAs, was observed in response to acute hypoxia and to a lesser extent following semistarvation. Conversely, the sustained elevation of Atrogin-1, Bnip3, and Map1lc3b mRNAs and the increased activity of their upstream transcriptional regulator Forkhead box O1 were specific to chronic hypoxia because they were not observed in response to reduced food intake. In conclusion, altered regulation of protein turnover during hypoxia-induced muscle atrophy resulted from an interaction of semistarvation and a hypoxia-specific component. The finding that food restriction but not hypoxia-induced semistarvation inhibited regulatory steps in protein synthesis suggests a hypoxia-specific impairment of the coordination between protein-synthesis signaling and protein-degradation signaling in skeletal muscle.


PLOS ONE | 2014

Arginase-1 Deficiency Regulates Arginine Concentrations and NOS2-Mediated NO Production during Endotoxemia

Karolina A. P. Wijnands; Marten A. Hoeksema; Dennis M. Meesters; Nynke M. S. van den Akker; Daniel G. M. Molin; Jacob J. Briedé; Mitrajit Ghosh; S. Eleonore Köhler; Marc A. M. J. van Zandvoort; Menno P.J. de Winther; Wim A. Buurman; Wouter H. Lamers; Martijn Poeze

Rationale and objective Arginase-1 is an important component of the intricate mechanism regulating arginine availability during immune responses and nitric oxide synthase (NOS) activity. In this study Arg1fl/fl/Tie2-Cretg/− mice were developed to investigate the effect of arginase-1 related arginine depletion on NOS2- and NOS3-dependent NO production and jejunal microcirculation under resting and endotoxemic conditions, in mice lacking arginase-1 in endothelial and hematopoietic cells. Methods and Results Arginase-1-deficient mice as compared with control mice exhibited higher plasma arginine concentration concomitant with enhanced NO production in endothelial cells and jejunal tissue during endotoxemia. In parallel, impaired jejunal microcirculation was observed in endotoxemic conditions. Cultured bone-marrow-derived macrophages of arginase-1 deficient animals also presented a higher inflammatory response to endotoxin than control littermates. Since NOS2 competes with arginase for their common substrate arginine during endotoxemia, Nos2 deficient mice were also studied under endotoxemic conditions. As Nos2−/− macrophages showed an impaired inflammatory response to endotoxin compared to wild-type macrophages, NOS2 is potentially involved. A strongly reduced NO production in Arg1fl/fl/Tie2-Cretg/− mice following infusion of the NOS2 inhibitor 1400W further implicated NOS2 in the enhanced capacity to produce NO production Arg1fl/fl/Tie2-Cretg/− mice. Conclusions Reduced arginase-1 activity in Arg1fl/fl/Tie2-Cretg/− mice resulted in increased inflammatory response and NO production by NOS2, accompanied by a depressed microcirculatory flow during endotoxemia. Thus, arginase-1 deficiency facilitates a NOS2-mediated pro-inflammatory activity at the expense of NOS3-mediated endothelial relaxation.


Brain Behavior and Immunity | 2015

Tlr4 upregulation in the brain accompanies depression- and anxiety-like behaviors induced by a high-cholesterol diet

Tatyana Strekalova; Matthew R. Evans; João Costa-Nunes; S. O. Bachurin; Naira Yeritsyan; Yvonne Couch; Harry M. W. Steinbusch; S. Eleonore Köhler; Klaus-Peter Lesch; Daniel C. Anthony

An association between metabolic abnormalities, hypercholesterolemia and affective disorders is now well recognized. Less well understood are the molecular mechanisms, both in brain and in the periphery, that underpin this phenomenon. In addition to hepatic lipid accumulation and inflammation, C57BL/6J mice fed a high-cholesterol diet (0.2%) to induce non-alcoholic fatty liver disease (NAFLD), exhibited behavioral despair, anxiogenic changes, and hyperlocomotion under bright light. These abnormalities were accompanied by increased expression of transcript and protein for Toll-like receptor 4, a pathogen-associated molecular pattern (PAMP) receptor, in the prefrontal cortex and the liver. The behavioral changes and Tlr4 expression were reversed ten days after discontinuation of the high-cholesterol diet. Remarkably, the dietary fat content and body mass of experimental mice were unchanged, suggesting a specific role for cholesterol in the molecular and behavioral changes. Expression of Sert and Cox1 were unaltered. Together, our study has demonstrated for the first time that high consumption of cholesterol results in depression- and anxiety-like changes in C57BL/6J mice and that these changes are unexpectedly associated with the increased expression of TLR4, which suggests that TLR4 may have a distinct role in the CNS unrelated to pathogen recognition.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2013

Ablation of Arg1 in hematopoietic cells improves respiratory function of lung parenchyma, but not that of larger airways or inflammation in asthmatic mice

Roy H. E. Cloots; Selvakumari Sankaranarayanan; Chiel C. de Theije; Matthew E. Poynter; Els Terwindt; Paul van Dijk; Theodorus B. M. Hakvoort; Wouter H. Lamers; S. Eleonore Köhler

Asthma is a chronic inflammatory disease of the small airways, with airway hyperresponsiveness (AHR) and inflammation as hallmarks. Recent studies suggest a role for arginase in asthma pathogenesis, possibly because arginine is the substrate for both arginase and NO synthase and because NO modulates bronchial tone and inflammation. Our objective was to investigate the importance of increased pulmonary arginase 1 expression on methacholine-induced AHR and lung inflammation in a mouse model of allergic asthma. Arginase 1 expression in the lung was ablated by crossing Arg1(fl/fl) with Tie2Cre(tg/-) mice. Mice were sensitized and then challenged with ovalbumin. Lung function was measured with the Flexivent. Adaptive changes in gene expression, chemokine and cytokine secretion, and lung histology were quantified with quantitative PCR, ELISA, and immunohistochemistry. Arg1 deficiency did not affect the allergic response in lungs and large-airway resistance, but it improved peripheral lung function (tissue elastance and resistance) and attenuated adaptive increases in mRNA expression of arginine-catabolizing enzymes Arg2 and Nos2, arginine transporters Slc7a1 and Slc7a7, chemokines Ccl2 and Ccl11, cytokines Tnfa and Ifng, mucus-associated epithelial markers Clca3 and Muc5ac, and lung content of IL-13 and CCL11. However, expression of Il4, Il5, Il10, and Il13 mRNA; lung content of IL-4, IL-5, IL-10, TNF-α, and IFN-γ protein; and lung pathology were not affected. Correlation analysis showed that Arg1 ablation disturbed the coordinated pulmonary response to ovalbumin challenges, suggesting arginine (metabolite) dependence of this response. Arg1 ablation in the lung improved peripheral lung function and affected arginine metabolism but had little effect on airway inflammation.


Journal of Biological Chemistry | 2011

Arginine Deficiency Causes Runting in the Suckling Period by Selectively Activating the Stress Kinase GCN2

Vincent Marion; Selvakumari Sankaranarayanan; Chiel C. de Theije; Paul van Dijk; Patrick Lindsey; Marinus C. Lamers; Heather P. Harding; David Ron; Wouter H. Lamers; S. Eleonore Köhler

Suckling “F/A2” mice, which overexpress arginase-I in their enterocytes, develop a syndrome (hypoargininemia, reduced hair and muscle growth, impaired B-cell maturation) that resembles IGF1 deficiency. The syndrome may result from an impaired function of the GH-IGF1 axis, activation of the stress-kinase GCN2, and/or blocking of the mTORC1-signaling pathway. Arginine deficiency inhibited GH secretion and decreased liver Igf1 mRNA and plasma IGF1 concentration, but did not change muscle IGF1 concentration. GH supplementation induced Igf1 mRNA synthesis, but did not restore growth, ruling out direct involvement of the GH-IGF1 axis. In C2C12 muscle cells, arginine withdrawal activated GCN2 signaling, without impacting mTORC1 signaling. In F/A2 mice, the reduction of plasma and tissue arginine concentrations to ∼25% of wild-type values activated GCN2 signaling, but mTORC1-mediated signaling remained unaffected. Gcn2-deficient F/A2 mice suffered from hypoglycemia and died shortly after birth. Because common targets of all stress kinases (eIF2α phosphorylation, Chop mRNA expression) were not increased in these mice, the effects of arginine deficiency were solely mediated by GCN2.


Journal of Anatomy | 2017

The fate of the vitelline and umbilical veins during the development of the human liver

Jill P. J. M. Hikspoors; Mathijs M. J. P. Peeters; Hayelom K. Mekonen; Nutmethee Kruepunga; Greet Mommen; Pieter Cornillie; S. Eleonore Köhler; Wouter H. Lamers

Differentiation of endodermal cells into hepatoblasts is well studied, but the remodeling of the vitelline and umbilical veins during liver development is less well understood. We compared human embryos between 3 and 10 weeks of development with pig and mouse embryos at comparable stages, and used Amira 3D reconstruction and Cinema 4D remodeling software for visualization. The vitelline and umbilical veins enter the systemic venous sinus on each side via a common entrance, the hepatocardiac channel. During expansion into the transverse septum at Carnegie Stage (CS)12 the liver bud develops as two dorsolateral lobes or ‘wings’ and a single ventromedial lobe, with the liver hilum at the intersection of these lobes. The dorsolateral lobes each engulf a vitelline vein during CS13 and the ventromedial lobe both umbilical veins during CS14, but both venous systems remain temporarily identifiable inside the liver. The dominance of the left‐sided umbilical vein and the rightward repositioning of the sinuatrial junction cause de novo development of left‐to‐right shunts between the left umbilical vein in the liver hilum and the right hepatocardiac channel (venous duct) and the right vitelline vein (portal sinus), respectively. Once these shunts have formed, portal branches develop from the intrahepatic portions of the portal vein on the right side and the umbilical vein on the left side. The gall bladder is a reliable marker for this hepatic vascular midline. We found no evidence for large‐scale fragmentation of embryonic veins as claimed by the ‘vestigial’ theory. Instead and in agreement with the ‘lineage’ theory, the vitelline and umbilical veins remained temporally identifiable inside the liver after being engulfed by hepatoblasts. In agreement with the ‘hemodynamic’ theory, the left–right shunts develop de novo.


Journal of Anatomy | 2015

Development of the human infrahepatic inferior caval and azygos venous systems

Jill P. J. M. Hikspoors; Jelly Hm Soffers; Hayelom K. Mekonen; Pieter Cornillie; S. Eleonore Köhler; Wouter H. Lamers

Differences in opinion regarding the development of the infrahepatic inferior caval and azygos venous systems in mammals centre on the contributions of ‘caudal cardinal’, ‘subcardinal’, ‘supracardinal’, ‘medial and lateral sympathetic line’ and ‘sacrocardinal’ veins. The disagreements appear to arise from the use of topographical position rather than developmental origin as criterion to define separate venous systems. We reinvestigated the issue in a closely spaced series of human embryos between 4 and 10 weeks of development. Structures were visualized with the Amira® reconstruction and Cinema4D® remodelling software. The vertebral level and neighbouring structures were used as topographic landmarks. The main results were that the caudal cardinal veins extended caudally from the common cardinal vein between CS11 and CS15, followed by the development of the subcardinal veins as a plexus sprouting ventrally from the caudal cardinal veins. The caudal cardinal veins adapted their course from lateral to medial relative to the laterally expanding lungs, adrenal glands, definitive kidneys, sympathetic trunk and umbilical arteries between CS15 and CS18, and then became interrupted in the part overlaying the regressing mesonephroi (Th12‐L3). The caudal part of the left caudal cardinal vein then also regressed. The infrarenal part of the inferior caval vein originated from the right caudal cardinal vein, while the renal part originated from subcardinal veins. The azygos veins developed from the remaining cranial part of the caudal cardinal veins. Our data show that all parts of the inferior caval and azygos venous systems developed directly from the caudal cardinal veins or from a plexus sprouting from these veins.

Collaboration


Dive into the S. Eleonore Köhler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiel C. de Theije

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge