Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. F. Hönig is active.

Publication


Featured researches published by S. F. Hönig.


Astronomy and Astrophysics | 2010

The dusty heart of nearby active galaxies - II. From clumpy torus models to physical properties of dust around AGN

S. F. Hönig; Makoto Kishimoto

With the possibilities of high spatial resolution imaging and spectroscopy as well as infrared (IR) interferometry, the dusty environments (= “dusty torus”) of active galactic nuclei (AGN) are now in reach of observations. Following our Paper I on ground-based mid-IR spectro-photometry, we present an upgrade to our radiative transfer model of three-dimensional clumpy dust tori. The upgrade with respect to earlier work concerns an improved handling of the diffuse radiation field in the torus, which is approximated by a statistical approach. The models are presented as tools to translate classical and interferometric observations into characteristic properties of the dust distribution. We compare model spectral energy distributions (SEDs) for different chemical and grain-size compositions of the dust and find that clouds with standard interstellar matter (ISM) dust and optical depth τV ∼ 50 appear in overall agreement with observed IR SEDs. By studying parameter dependencies, it is shown that type 1 AGN SEDs, in particular the mid-IR spectral index, can be used to constrain the radial dust cloud distribution power law index a, while other parameters are more difficult to assess using SEDs only. Interferometry adds important additional information for modeling when it is interpreted concurrently with the SED. Although type 2 AGN can in principle be used to constrain model parameters as well, obscuration effects make the analysis more ambiguous. We propose a simple, interferometry-based method to distinguish between “compact” and “extended” radial dust distributions without detailed modeling of the data and introduce a way to easily determine individual or sample average model parameters using the observed optical depth in the silicate feature and the mid-IR spectral index.


Astronomy and Astrophysics | 2010

The dusty heart of nearby active galaxies. I. High-spatial resolution mid-IR spectro-photometry of Seyfert galaxies

S. F. Hönig; Makoto Kishimoto; P. Gandhi; Alain Smette; D. Asmus; Wolfgang J. Duschl; M. Polletta; G. Weigelt

In a series of papers, we aim at stepping towards characterizing physical properties of the AGN dust torus by combining IR highspatial resolution observations with 3D clumpy torus models. In this first paper, we present mid-IR imaging and 8−13 μ ml owresolution spectroscopy of nine type 1 and ten type 2 AGN. The observations were carried out with the VLT/VISIR mid-IR imager and spectrograph and can be considered the largest currently available mid-infrared spectro-photometric data set of AGN at spatial resolution <100 pc. These data resolve scales at which the emission from the dust torus dominates the overall flux, and emission from the host galaxy (e.g. star-formation) is resolved out in most cases. The silicate absorption features are moderately deep and emission features, if seen at all, are shallow. The strongest silicate emission feature in our sample shows some notable shift of the central wavelength from the expected 9.7 μm (based on ISM extinction curves) to ∼10.5 μm. We compare the observed mid-IR luminosities of our objects to AGN luminosity tracers (X-ray, optical and [O iii] luminosities) and find that the mid-IR radiation is emitted quite isotropically. In two cases, IC 5063 and MCG–3–34–64, we find evidence for extended dust emission in the narrow-line region. We confirm the correlation between observed silicate feature strength and Hydrogen column density, which was recently found in Spitzer data at lower spatial resolution. In a further step, our 3D clumpy torus model has been used to interpret the data. We show that the strength of the silicate feature and the mid-IR spectral index α can be used to get reasonable constraints on the radial dust distribution of the torus and the average number of clouds N0 along an equatorial line-of-sight in clumpy torus models. The mid-IR spectral index α is almost exclusively determined by the radial dust distribution power-law index a, while the silicate feature depth mostly depends on N0 and the torus inclination. A comparison of model predictions to our type 1 and type 2 AGN reveals that average parameters of a = −1.0 ± 0. 5a ndN0 = 5 − 8 are typically seen in the presented sample, which means that the radial dust distribution is rather shallow. As a proof-of-concept of this method, we compared the model parameters derived from α and the silicate feature strength to more detailed studies of full IR SEDs and interferometry and found that the constraints on a and N0 are consistent. Finally, we may have found evidence that the radial structure of the torus changes from low to high AGN luminosities towards steeper dust distributions, and we discuss implications for the IR size-luminosity relation.


Monthly Notices of the Royal Astronomical Society | 2014

The subarcsecond mid-infrared view of local active galactic nuclei – I. The N- and Q-band imaging atlas?

D. Asmus; S. F. Hönig; P. Gandhi; Alain Smette; Wolfgang J. Duschl

We present the first subarcsecond-resolution mid-infrared (MIR) atlas of local active galactic nuclei (AGN). Our atlas contains 253 AGN with a median redshift of z = 0.016, and includes all publicly available MIR imaging performed to date with ground-based 8-m class telescopes, a total of 895 independent measurements. Of these, more than 60 per cent are published here for the first time. We detect extended nuclear emission in at least 21 per cent of the objects, while another 19 per cent appear clearly point-like, and the remaining objects cannot be constrained. Where present, elongated nuclear emission aligns with the ionization cones in Seyferts. Subarcsecond resolution allows us to isolate the AGN emission on scales of a few tens of parsecs and to obtain nuclear photometry in multiple filters for the objects. Median spectral energy distributions (SEDs) for the different optical AGN types are constructed and individual MIR 12 and 18 mu m continuum luminosities are computed. These range over more than six orders of magnitude. In comparison to the arcsecond-scale MIR emission as probed by Spitzer, the continuum emission is much lower on subarcsecond scales in many cases. The silicate feature strength is similar on both scales and generally appears in emission (absorption) in type I (II) AGN. However, the polycyclic aromatic hydrocarbon emission appears weaker or absent on subarcsecond scales. The differences of the MIR SEDs on both scales are particularly large for AGN/starburst composites and close-by (and weak) AGN. The nucleus dominates over the total emission of the galaxy only at luminosities greater than or similar to 10(44) erg s(-1). The AGN MIR atlas is well suited not only for detailed investigation of individual sources but also for statistical studies of AGN unification.


Astronomy and Astrophysics | 2011

Mapping the radial structure of AGN tori

Makoto Kishimoto; S. F. Hönig; Robert Antonucci; F. Millour; Konrad R. W. Tristram; G. Weigelt

We present mid-IR interferometric observations of six type 1 AGNs at multiple baseline lengths ranging from 27 m to 130 m, reaching high angular resolutions up to λ/B ∼ 0.02 arcseconds. For two of the targets, we have simultaneous n ear-IR interferometric measurements as well, taken within a week. We find that all the objects are partially resolved at long baselines in these IR wavelengths. The multiple-baseline data directly probe the radial distr ibu ion of the material on sub-pc scales. We show that for our sample, which is small but spans over ∼2.5 orders of magnitudes in the UV /optical luminosityL of the central engine, the radial distribution clearly and systematically changes with luminosity. The brightness distribution at a given mid-IR wavelength se ems to be rather well described by a power law, which makes a si mple Gaussian or ring size estimation quite inadequate. In this c ase, a half-light radius R1/2 can be used as a representative size. We show that the higher luminosity objects become more compact in no rmalized half-light radiiR1/2/Rin in the mid-IR, whereRin is the dust sublimation radius empirically given by the L fit of the near-IR reverberation radii. This means that, cont rary to previous studies, the physical mid-IR emission size (e.g. in pc) is not proport ional to L, but increases withL much more slowly. With our current datasets, we find that R1/2 ∝ L at 8.5μm, andR1/2 nearly constant at 13 μm. The derived size information also seems to correlate with th e properties of the total flux spectrum, in particular the sma ller R1/2/Rin objects having bluer mid-IR spectral shape. We use a power-l aw temperature /density gradient model as a reference, and infer that the radial surface density distribution of the heated dust g rains at a radiusr changes from a steep ∼r−1 structure in high luminosity objects to a shallower ∼r0 structure in those of lower luminosity. The inward dust temp rature distribution does not seem to smoothly reach the sublimation temperature – on the innermost scale o f ∼Rin, a relatively low temperature core seems to co-exist with a s lightly distinct brightness concentration emitting roughly at the sublimation temperature.


Astronomy and Astrophysics | 2014

The dusty torus in the Circinus galaxy: a dense disk and the torus funnel ,

Konrad R. W. Tristram; L. Burtscher; W. Jaffe; Klaus Meisenheimer; S. F. Hönig; Makoto Kishimoto; M. Schartmann; G. Weigelt

Context. With infrared interferometry it is possible to resolve the nuclear dust distributions that are commonly associated with the dusty torus in active galactic nuclei (AGN). The Circinus galaxy hosts the closest Seyfert 2 nucleus and previous interferometric observations have shown that its nuclear dust emission is particularly well resolved. Aims. The aim of the present interferometric investigation is to better constrain the dust morphology in this active nucleus. Methods. To this end, extensive new observations were carried out with the MID-infrared Interferometric instrument (MIDI) at the Very Large Telescope Interferometer, leading to a total of 152 correlated flux spectra and differential phases between 8 and 13 μm. To interpret this data, we used a model consisting of black-body emitters with a Gaussian brightness distribution and with dust extinction. Results. The direct analysis of the data and the modelling confirm that the emission is distributed in two distinct components: a disklike emission component with a size (FWHM) of ∼0.2 × 1.1 pc and an extended component with a size of ∼0.8 × 1.9 pc. The disk-like component is elongated along PA ∼ 46 ◦ and oriented perpendicular to the ionisation cone and outflow. The extended component is responsible for 80% of the mid-infrared emission. It is elongated along PA ∼ 107 ◦ , which is roughly perpendicular to the disk component and thus in polar direction. It is interpreted as emission from the inner funnel of an extended dust distribution and shows a strong increase in the extinction towards the south-east. We find both emission components to be consistent with dust at T ∼ 300 K, that is we find no evidence of an increase in the temperature of the dust towards the centre. From this we infer that most of the near-infrared emission probably comes from parsec scales as well. We further argue that the disk component alone is not sufficient to provide the necessary obscuration and collimation of the ionising radiation and outflow. The material responsible for this must instead be located on scales of ∼1 pc, surrounding the disk. We associate this material with the dusty torus. Conclusions. The clear separation of the dust emission into a disk-like emitter and a polar elongated source will require an adaptation of our current understanding of the dust emission in AGN. The lack of any evidence of an increase in the dust temperature towards the centre poses a challenge for the picture of a centrally heated dust distribution.


Astronomy and Astrophysics | 2011

The innermost dusty structure in active galactic nuclei as probed by the Keck interferometer

Makoto Kishimoto; S. F. Hönig; Robert Antonucci; Richard Barvainis; Takayuki Kotani; Konrad R. W. Tristram; G. Weigelt; K. Levin

We are now exploring the inner region of type 1 active galactic nuclei (AGNs) with the Keck interferometer in the near-infrared. Adding to the four targets previously studied, we report measurements of the K-band (2.2 μm) visibilities for four more targets, namely AKN120, IC 4329A, Mrk6, and the radio-loud QSO 3C 273 at z = 0.158. The observed visibilities are quite high for all the targets, which we interpret as an indication of the partial resolution of the dust sublimation region. The effective ring radii derived from the observed visibilities scale approximately with L 1/2 , where L is the AGN luminosity. Comparing the radii with those from independent optical-infrared reverberation measurements, these data support our previous claim that the interferometric ring radius is either roughly equal to or slightly larger than the reverberation radius. We interpret the ratio of these two radii for a given L as an approximate probe of the radial distribution of the inner accreting material. We show tentative evidence that this inner radial structure might be closely related to the radio-loudness of the central engine. Finally, we re-observed the brightest Seyfert 1 galaxy NGC 4151. Its marginally higher visibility at a shorter projected baseline, compared to our previous measurements obtained one year before, further supports the partial resolution of the inner structure. We did not detect any significant change in the implied emission size when the K-band flux was brightened by a factor of 1.5 over a time interval of one year.


The Astrophysical Journal | 2013

The lick agn monitoring project 2011: Fe II reverberation from the outer broad-line region

Aaron J. Barth; Anna Pancoast; Vardha N. Bennert; Brendon J. Brewer; Gabriela Canalizo; Alexei V. Filippenko; Elinor L. Gates; Jenny E. Greene; Weidong Li; Matthew A. Malkan; David J. Sand; Daniel Stern; Tommaso Treu; Jong Hak Woo; Roberto J. Assef; Hyun Jin Bae; Tabitha Buehler; S. Bradley Cenko; Kelsey I. Clubb; Michael C. Cooper; Aleksandar M. Diamond-Stanic; S. F. Hönig; Michael D. Joner; C. David Laney; Mariana S. Lazarova; A. M. Nierenberg; Jeffrey M. Silverman; Erik J. Tollerud; Jonelle L. Walsh

The prominent broad Fe II emission blends in the spectra of active galactic nuclei have been shown to vary in response to continuum variations, but past attempts to measure the reverberation lag time of the optical Fe II lines have met with only limited success. Here we report the detection of Fe II reverberation in two Seyfert 1 galaxies, NGC 4593 and Mrk 1511, based on data from a program carried out at Lick Observatory in Spring 2011. Light curves for emission lines including Hβ and Fe II were measured by applying a fitting routine to decompose the spectra into several continuum and emission-line components, and we use cross-correlation techniques to determine the reverberation lags of the emission lines relative to V-band light curves. In both cases, the measured lag (τcen) of Fe II is longer than that of Hβ, although the inferred lags are somewhat sensitive to the choice of Fe II template used in the fit. For spectral decompositions done using the Fe II template of Veron-Cetty et al., we find τcen (Fe II)/τcen (Hβ) = 1.9 ± 0.6 in NGC 4593 and 1.5 ± 0.3 in Mrk 1511. The detection of highly correlated variations between Fe II and continuum emission demonstrates that the Fe II emission in these galaxies originates in photoionized gas, located predominantly in the outer portion of the broad-line region.


Monthly Notices of the Royal Astronomical Society | 2015

The subarcsecond mid-infrared view of local active galactic nuclei – II. The mid-infrared–X-ray correlation

D. Asmus; P. Gandhi; S. F. Hönig; Alain Smette; Wolfgang J. Duschl

We present an updated mid-infrared (MIR) versus X-ray correlation for the local active galactic nuclei (AGN) population based on the high angular resolution 12 and 18?m continuum fluxes from the AGN subarcsecond MIR atlas and 2–10 keV and 14–195 keV data collected from the literature. We isolate a sample of 152 objects with reliable AGN nature and multi-epoch X-ray data and minimal MIR contribution from star formation. Although the sample is not homogeneous or complete, we show that our results are unlikely to be affected by significant biases. The MIR–X-ray correlation is nearly linear and within a factor of 2 independent of the AGN type and the wavebands used. The observed scatter is <0.4 dex. A possible flattening of the correlation slope at the highest luminosities probed (?1045? erg s?1) towards low MIR luminosities for a given X-ray luminosity is indicated but not significant. Unobscured objects have, on average, an MIR–X-ray ratio that is only ?0.15?dex higher than that of obscured objects. Objects with intermediate X-ray column densities (22 < log?NH < 23) actually show the highest MIR–X-ray ratio on average. Radio-loud objects show a higher mean MIR–X-ray ratio at low luminosities while the ratio is lower than average at high luminosities. This may be explained by synchrotron emission from the jet contributing to the MIR at low luminosities and additional X-ray emission at high luminosities. True Seyfert 2 candidates do not show any deviation from the general behaviour suggesting that they possess a dusty obscurer as in other AGN. Double AGN also do not deviate. Finally, we show that the MIR–X-ray correlation can be used to investigate the AGN nature of uncertain objects. Specifically, we give equations that allow us to determine the intrinsic 2–10 keV luminosities and column densities for objects with complex X-ray properties to within 0.34 dex. These techniques are applied to the uncertain objects of the remaining AGN MIR atlas, demonstrating the usefulness of the MIR–X-ray correlation as an empirical tool.


The Astrophysical Journal | 2012

The lick AGN monitoring project 2011: Dynamical modeling of the broad-line region in Mrk 50

Anna Pancoast; Brendon J. Brewer; Tommaso Treu; Aaron J. Barth; Vardha N. Bennert; Gabriela Canalizo; Alexei V. Filippenko; Elinor L. Gates; Jenny E. Greene; Weidong Li; Matthew A. Malkan; David J. Sand; Daniel Stern; Jong Hak Woo; Roberto J. Assef; Hyun Jin Bae; Tabitha Buehler; S. Bradley Cenko; Kelsey I. Clubb; Michael C. Cooper; Aleksandar M. Diamond-Stanic; Kyle D. Hiner; S. F. Hönig; Michael D. Joner; M. T. Kandrashoff; C. David Laney; Mariana S. Lazarova; A. M. Nierenberg; Dawoo Park; Jeffrey M. Silverman

We present dynamical modeling of the broad-line region (BLR) in the Seyfert 1 galaxy Mrk 50 using reverberation mapping data taken as part of the Lick AGN Monitoring Project (LAMP) 2011. We model the reverberation mapping data directly, constraining the geometry and kinematics of the BLR, as well as deriving a black hole mass estimate that does not depend on a normalizing factor or virial coefficient. We find that the geometry of the BLR in Mrk 50 is a nearly face-on thick disk, with a mean radius of 9.6^(+1.2)_(–0.9) light days, a width of the BLR of 6.9^(+1.2)_(–1.1) light days, and a disk opening angle of 25 ± 10 deg above the plane. We also constrain the inclination angle to be 9^(+7)_(–5) deg, close to face-on. Finally, the black hole mass of Mrk 50 is inferred to be log_(10)(M_(BH)/M_☉) = 7.57^(+0.44)_(–0.27). By comparison to the virial black hole mass estimate from traditional reverberation mapping analysis, we find the normalizing constant (virial coefficient) to be log_(10) f = 0.78^(+0.44)_(–0.27), consistent with the commonly adopted mean value of 0.74 based on aligning the M_(BH)-σ* relation for active galactic nuclei and quiescent galaxies. While our dynamical model includes the possibility of a net inflow or outflow in the BLR, we cannot distinguish between these two scenarios.


The Astrophysical Journal | 2011

The Lick AGN Monitoring Project 2011: Reverberation Mapping of Markarian 50

Aaron J. Barth; Anna Pancoast; Shawn J. Thorman; Vardha N. Bennert; David J. Sand; Weidong Li; Gabriela Canalizo; Alexei V. Filippenko; Elinor L. Gates; Jenny E. Greene; Matthew A. Malkan; Daniel Stern; Tommaso Treu; Jong Hak Woo; Roberto J. Assef; Hyun Jin Bae; Brendon J. Brewer; Tabitha Buehler; S. Bradley Cenko; Kelsey I. Clubb; Michael C. Cooper; Aleksandar M. Diamond-Stanic; Kyle D. Hiner; S. F. Hönig; Michael D. Joner; M. T. Kandrashoff; C. David Laney; Mariana S. Lazarova; A. M. Nierenberg; Dawoo Park

The Lick AGN Monitoring Project 2011 observing campaign was carried out over the course of 11 weeks in spring 2011. Here we present the first results from this program, a measurement of the broad-line reverberation lag in the Seyfert 1 galaxy Mrk 50. Combining our data with supplemental observations obtained prior to the start of the main observing campaign, our data set covers a total duration of 4.5 months. During this time, Mrk 50 was highly variable, exhibiting a maximum variability amplitude of a factor of ~4 in the U-band continuum and a factor of ~2 in the Hβ line. Using standard cross-correlation techniques, we find that Hβ and Hγ lag the V-band continuum by τ_(cen) = 10.64^(+0.82)_(–0.93) and 8.43^(+1.30)_(–1.28) days, respectively, while the lag of He II λ4686 is unresolved. The Hβ line exhibits a symmetric velocity-resolved reverberation signature with shorter lags in the high-velocity wings than in the line core, consistent with an origin in a broad-line region (BLR) dominated by orbital motion rather than infall or outflow. Assuming a virial normalization factor of f = 5.25, the virial estimate of the black hole mass is (3.2 ± 0.5) × 10^7 M_☉. These observations demonstrate that Mrk 50 is among the most promising nearby active galaxies for detailed investigations of BLR structure and dynamics.

Collaboration


Dive into the S. F. Hönig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Gandhi

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Konrad R. W. Tristram

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Alonso-Herrero

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alain Smette

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

C. Packham

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

N. A. Levenson

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge