Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Girish Kumar is active.

Publication


Featured researches published by S. Girish Kumar.


Journal of Physical Chemistry A | 2011

Review on Modified TiO2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics

S. Girish Kumar; L. Gomathi Devi

Titania is one of the most widely used benchmark standard photocatalysts in the field of environmental applications. However, the large band gap of titania and massive recombination of photogenerated charge carriers limit its overall photocatalytic efficiency. The former can be overcome by modifying the electronic band structure of titania including various strategies like coupling with a narrow band gap semiconductor, metal ion/nonmetal ion doping, codoping with two or more foreign ions, surface sensitization by organic dyes or metal complexes, and noble metal deposition. The latter can be corrected by changing the surface properties of titania by fluorination or sulfation or by the addition of suitable electron acceptors besides molecular oxygen in the reaction medium. This review encompasses several advancements made in these aspects, and also some of the new physical insights related to the charge transfer events like charge carrier generation, trapping, detrapping, and their transfer to surface are discussed for each strategy of the modified titania to support the conclusions derived. The synergistic effects in the mixed polymorphs of titania and also the theories proposed for their enhanced activity are reported. A recent venture on the synthesis and applications of anatase titania with a large percentage of reactive {001} facets and their band gap extension to the visible region via nonmetal ion doping which is a current hot topic is briefly outlined.


RSC Advances | 2015

Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications

S. Girish Kumar; K. S. R. Koteswara Rao

As an alternative to the gold standard TiO2 photocatalyst, the use of zinc oxide (ZnO) as a robust candidate for wastewater treatment is widespread due to its similarity in charge carrier dynamics upon bandgap excitation and the generation of reactive oxygen species in aqueous suspensions with TiO2. However, the large bandgap of ZnO, the massive charge carrier recombination, and the photoinduced corrosion–dissolution at extreme pH conditions, together with the formation of inert Zn(OH)2 during photocatalytic reactions act as barriers for its extensive applicability. To this end, research has been intensified to improve the performance of ZnO by tailoring its surface-bulk structure and by altering its photogenerated charge transfer pathways with an intention to inhibit the surface-bulk charge carrier recombination. For the first time, the several strategies, such as tailoring the intrinsic defects, surface modification with organic compounds, doping with foreign ions, noble metal deposition, heterostructuring with other semiconductors and modification with carbon nanostructures, which have been successfully employed to improve the photoactivity and stability of ZnO are critically reviewed. Such modifications enhance the charge separation and facilitate the generation of reactive oxygenated free radicals, and also the interaction with the pollutant molecules. The synthetic route to obtain hierarchical nanostructured morphologies and study their impact on the photocatalytic performance is explained by considering the morphological influence and the defect-rich chemistry of ZnO. Finally, the crystal facet engineering of polar and non-polar facets and their relevance in photocatalysis is outlined. It is with this intention that the present review directs the further design, tailoring and tuning of the physico-chemical and optoelectronic properties of ZnO for better applications, ranging from photocatalysis to photovoltaics.


Journal of Hazardous Materials | 2009

Photo degradation of Methyl Orange an azo dye by Advanced Fenton Process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism.

L. Gomathi Devi; S. Girish Kumar; K. Mohan Reddy; C. Munikrishnappa

Advanced Fenton process (AFP) using zero valent metallic iron (ZVMI) is studied as a potential technique to degrade the azo dye in the aqueous medium. The influence of various reaction parameters like effect of iron dosage, concentration of H(2)O(2)/ammonium per sulfate (APS), initial dye concentration, effect of pH and the influence of radical scavenger are studied and optimum conditions are reported. The degradation rate decreased at higher iron dosages and also at higher oxidant concentrations due to the surface precipitation which deactivates the iron surface. The rate constant for the processes Fe(0)/UV and Fe(0)/APS/UV is twice compared to their respective Fe(0)/dark and Fe(0)/APS/dark processes. The rate constant for Fe(0)/H(2)O(2)/UV process is four times higher than Fe(0)/H(2)O(2)/dark process. The increase in the efficiency of Fe(0)/UV process is attributed to the cleavage of stable iron complexes which produces Fe(2+) ions that participates in cyclic Fenton mechanism for the generation of hydroxyl radicals. The increase in the efficiency of Fe(0)/APS/UV or H(2)O(2) compared to dark process is due to continuous generation of hydroxyl radicals and also due to the frequent photo reduction of Fe(3+) ions to Fe(2+) ions. Though H(2)O(2) is a better oxidant than APS in all respects, but it is more susceptible to deactivation by hydroxyl radical scavengers. The decrease in the rate constant in the presence of hydroxyl radical scavenger is more for H(2)O(2) than APS. Iron powder retains its recycling efficiency better in the presence of H(2)O(2) than APS. The decrease in the degradation rate in the presence of APS as an oxidant is due to the fact that generation of free radicals on iron surface is slower compared to H(2)O(2). Also, the excess acidity provided by APS retards the degradation rate as excess H(+) ions acts as hydroxyl radical scavenger. The degradation of Methyl Orange (MO) using Fe(0) is an acid driven process shows higher efficiency at pH 3. The efficiency of various processes for the de colorization of MO dye is of the following order: Fe(0)/H(2)O(2)/UV>Fe(0)/H(2)O(2)/dark>Fe(0)/APS/UV>Fe(0)/UV>Fe(0)/APS/dark>H(2)O(2)/UV approximately Fe(0)/dark>APS/UV. Dye resisted to degradation in the presence of oxidizing agent in dark. The degradation process was followed by UV-vis and GC-MS spectroscopic techniques. Based on the intermediates obtained probable degradation mechanism has been proposed. The result suggests that complete degradation of the dye was achieved in the presence of oxidizing agent when the system was amended with iron powder under UV light illumination. The concentration of Fe(2+) ions leached at the end of the optimized degradation experiment is found to be 2.78 x 10(-3)M. With optimization, the degradation using Fe(0) can be effective way to treat azo dyes in aqueous solution.


Energy and Environmental Science | 2014

Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects

S. Girish Kumar; K. S. R. Koteswara Rao

Among the armoury of photovoltaic materials, thin film heterojunction photovoltaics continue to be a promising candidate for solar energy conversion delivering a vast scope in terms of device design and fabrication. Their production does not require expensive semiconductor substrates and high temperature device processing, which allows reduced cost per unit area while maintaining reasonable efficiency. In this regard, superstrate CdTe/CdS solar cells are extensively investigated because of their suitable bandgap alignments, cost effective methods of production at large scales and stability against proton/electron irradiation. The conversion efficiencies in the range of 6–20% are achieved by structuring the device by varying the absorber/window layer thickness, junction activation/annealing steps, with more suitable front/back contacts, preparation techniques, doping with foreign ions, etc. This review focuses on fundamental and critical aspects like: (a) choice of CdS window layer and CdTe absorber layer; (b) drawbacks associated with the device including environmental problems, optical absorption losses and back contact barriers; (c) structural dynamics at CdS–CdTe interface; (d) influence of junction activation process by CdCl2 or HCF2Cl treatment; (e) interface and grain boundary passivation effects; (f) device degradation due to impurity diffusion and stress; (g) fabrication with suitable front and back contacts; (h) chemical processes occurring at various interfaces; (i) strategies and modifications developed to improve their efficiency. The complexity involved in understanding the multiple aspects of tuning the solar cell efficiency is reviewed in detail by considering the individual contribution from each component of the device. It is expected that this review article will enrich the materials aspects of CdTe/CdS devices for solar energy conversion and stimulate further innovative research interest on this intriguing topic.


Chemosphere | 2009

Heterogeneous photo catalytic degradation of anionic and cationic dyes over TiO2 and TiO2 doped with MO6+ ions under solar light: Correlation of dye structure and its adsorptive tendency on the degradation rate

L. Gomathi Devi; B. Narasimha Murthy; S. Girish Kumar

Degradation of synthetic dyes like Methyl Orange (MO), p-amino azo benzene (PAAB), Congo Red (CR), Brilliant Yellow (BY), Rhodamine-B (RB) and Methylene Blue (MB) under solar light were carried out using TiO(2) doped with Mo(6+) ions. The rate constant for the degradation of anionic dyes MO, PAAB, CR and BY was high at pH 5.6, while for cationic dyes the highest rate constant was obtained in the alkaline pH 8.0. These differences can be accounted to their adsorption capacity on the catalyst surface at different pH conditions. Among the photocatalyst used, Mo(6+) (0.06%)-TiO(2) showed enhanced activity due to the effective separation of charge carriers.


Central European Journal of Chemistry | 2010

Preparation, characterization and enhanced photocatalytic activity of Ni2+ doped titania under solar light.

L. Gomathi Devi; Nagaraju Kottam; S. Girish Kumar; K. Eraiah Rajashekhar

Anatase TiO2 was prepared by sol-gel method through the hydrolysis of TiCl4. Ni2+ was doped into the TiO2 matrix in the concentration range of 0.02 to 0.1 at.% and characterized by various analytical techniques. Powder X-ray diffraction revealed only anatase phase for all the samples, while diffuse reflectance spectral studies indicated a red shift in the band gap absorption to the visible region. The photocatalytic activities of these photocatalysts were probed for the degradation of methyl orange under natural solar light. The photocatalyst with optimum doping of 0.08 at.% Ni2+, showed enhanced activity, which is attributed to: (i) effective separation of charge carriers and (ii) large red shift in the band gap to visible region. The influence of crystallite size and dopant concentration on the charge carrier trapping — recombination dynamics is investigated.


Central European Journal of Chemistry | 2011

Strategies developed on the modification of titania for visible light response with enhanced interfacial charge transfer process: an overview

L. Gomathi Devi; S. Girish Kumar

The modification of titania by metal / non metal ion doping, coupling with narrow band gap sensitizer, surface flourination, metal deposition, and together with recent ventures on application of {001} facets of anatase titania for visible light response with enhanced charge carrier separation are briefly overviewed.


Chemical Papers | 2010

Photo-Fenton and photo-Fenton-like processes for the degradation of methyl orange in aqueous medium: Influence of oxidation states of iron

L. Gomathi Devi; S. Girish Kumar; K.S. Anantha Raju; K. Eraiah Rajashekhar

Degradation of methyl orange (MO) was carried out by the photo-Fenton process (Fe2+/H2O2/UV) and photo-Fenton-like processes (Fe3+/H2O2/UV, Fe2+/S2O82−/UV, and Fe3+/S2O82−/UV) at the acidic pH of 3 using hydrogen peroxide and ammonium persulfate (APS) as oxidants. Oxidation state of iron had a significant influence on the efficiency of photo-Fenton/photo-Fenton-like processes. It was found that a process with a source of Fe3+ ions as the catalyst showed higher efficiency compared to a process with the Fe2+ ion as the catalyst. H2O2 served as a better oxidant for both oxidation states of iron compared to APS. The lower efficiency of APS is attributed to the generation of excess protons which scavenges the hydroxyl radicals necessary for degradation. Further, the sulfate ions produced from S2O82− form a complex with Fe2+/Fe3+ ions thereby reducing the concentration of free iron ions in the solution. This process can also reduce the concentration of hydroxyl radicals in the solution. Efficiency of the various MO degradation processes follows the order: Fe3+/H2O2/UV, Fe3+/APS/UV, Fe2+/H2O2/UV, Fe2+/APS/UV.


Chemical Papers | 2017

Advancements in the zinc oxide nanomaterials for efficient photocatalysis

C. Sushma; S. Girish Kumar

Zinc oxide photocatalyst with multifaceted and tunable structure-electronic properties has garnered foremost relevance in the wastewater purification. The drawbacks supplemented with ZnO such as wide band gap, immense charge carrier recombination and photo-corrosion (deactivation) during the photocatalytic reactions obfuscate for large scale applications. Accordingly, research is swiftly inclining to spotlight the ZnO as an appropriate semiconductor to many competitive metal oxides (TiO2, Bi2O3 and WO3) in the area of heterogeneous photocatalysis. In this focused review, several strategies like synthesizing with hierarchical morphology and exposed facets, impurity doping, metal deposition, integrating with other semiconductors and modifying with carbon materials which induces multifunctional properties to boost the performance of ZnO are articulated. It is presumed that the photocatalytic activity of the modified ZnO arises from the collective contribution of effective charge carrier separation, generation of surplus active free radicals coupled with striking structure-electronic properties and nature of the photocatalytic reactions. The overall findings enunciate that such amendments to ZnO are beneficial to improve structural stability and also to obtain desired features driving for various energy applications.


Catalysis, Structure & Reactivity | 2017

Efficient bulk scale synthesis of popular pesticide synthon: tetrachlorothiophene

G. V. Shiva Reddy; M. Chandrappa; V. N. Padmanabha Gowda; Fazlur Rahaman; S. Girish Kumar; B. Narasimha Murthy; Phani Kumar Pullela

Abstract Broad spectrum pesticides are molecules which act across a range of pests. The popular class of compounds with this property are thiacloprid, nitenpyram, ethaboxam, silthiofam, 3,3,4,4-tetrachloro tetrahydro thiophene etc. Interestingly, all these compounds possess at least one heterocyclic ring like thiophene, furan, and imidazole etc. in their structure. Among the synthons available for synthesis of neonicotinoids, tetrachlorothiophene is unique. The bulk scale synthesis of tetrachlorothiophene is reported only by cyclization of hexachloro-1,3-butadiene. The reaction yields of synthesis of this synthon are around 45%. We report silica-coated magnetic nanoparticles as a generic catalyst for this cyclization reaction yielding tetrachlorothiophene. The yield improvement is 50–60% more compared to original yield. The distillate crystallization in methanol yielded >98% pure compound compared to typical 90–92% in conventional process. The proposed reaction uses reusable silica-coated 40 nm size magnetic nanoparticles and the catalyst itself is of low cost and reaction conditions are mild.

Collaboration


Dive into the S. Girish Kumar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. V. Shiva Reddy

CMR Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge