Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Grübel is active.

Publication


Featured researches published by S. Grübel.


Nature | 2015

Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)(5) in solution

Ph. Wernet; Kristjan Kunnus; Ida Josefsson; Ivan Rajkovic; Wilson Quevedo; Martin Beye; Simon Schreck; S. Grübel; Mirko Scholz; Dennis Nordlund; Wenkai Zhang; Robert W. Hartsock; W. F. Schlotter; J. J. Turner; Brian Kennedy; Franz Hennies; F.M.F. de Groot; Kelly J. Gaffney; Simone Techert; Michael Odelius; A. Föhlisch

Transition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion. Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site that need to be controlled to optimize complexes for photocatalytic hydrogen production and selective carbon–hydrogen bond activation. An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond-resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)5 in solution, that the photo-induced removal of CO generates the 16-electron Fe(CO)4 species, a homogeneous catalyst with an electron deficiency at the Fe centre, in a hitherto unreported excited singlet state that either converts to the triplet ground state or combines with a CO or solvent molecule to regenerate a penta-coordinated Fe species on a sub-picosecond timescale. This finding, which resolves the debate about the relative importance of different spin channels in the photochemistry of Fe(CO)5 (refs 4, 16,17,18,19 and 20), was made possible by the ability of femtosecond X-ray spectroscopy to probe frontier-orbital interactions with atom specificity. We expect the method to be broadly applicable in the chemical sciences, and to complement approaches that probe structural dynamics in ultrafast processes.


Science | 2014

Large-Amplitude Spin Dynamics Driven by a THz Pulse in Resonance with an Electromagnon

Teresa Kubacka; Jeremy A. Johnson; Matthias C. Hoffmann; C. Vicario; S. de Jong; P. Beaud; S. Grübel; S. W. Huang; Lucas Huber; L. Patthey; Yi-De Chuang; J. J. Turner; Georgi L. Dakovski; W. S. Lee; Michael P. Minitti; W. F. Schlotter; R. G. Moore; C.P. Hauri; V. Scagnoli; G. Ingold; S. L. Johnson; U. Staub

Ultrafast Manipulation Multiferroic materials commonly show both magnetism and ferroelectricity, such that the electric field can be used to manipulate the magnetic order, and vice versa. Kubacka et al. (p. 1333, published online 6 March) used a strong terahertz electromagnetic pulse in resonance with an electromagnon—an excitation based on both electric and magnetic ordering—to control the spin dynamics of the multiferroic TbMnO3 on a sub-picosecond time scale and induce the rotation of the spin-cycloid plane of the material. The electric field of an electromagnetic pulse exerts ultrafast control on the spin dynamics of the multiferroic TbMnO3. Multiferroics have attracted strong interest for potential applications where electric fields control magnetic order. The ultimate speed of control via magnetoelectric coupling, however, remains largely unexplored. Here, we report an experiment in which we drove spin dynamics in multiferroic TbMnO3 with an intense few-cycle terahertz (THz) light pulse tuned to resonance with an electromagnon, an electric-dipole active spin excitation. We observed the resulting spin motion using time-resolved resonant soft x-ray diffraction. Our results show that it is possible to directly manipulate atomic-scale magnetic structures with the electric field of light on a sub-picosecond time scale.


Review of Scientific Instruments | 2012

A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources

Kristjan Kunnus; Ivan Rajkovic; Simon Schreck; Wilson Quevedo; Sebastian Eckert; M. Beye; Edlira Suljoti; Christian Weniger; Christian Kalus; S. Grübel; Mirko Scholz; Dennis Nordlund; Wenkai Zhang; Robert W. Hartsock; Kelly J. Gaffney; W. F. Schlotter; J. J. Turner; Brian Kennedy; Franz Hennies; Simone Techert; Philippe Wernet; A. Föhlisch

We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak fluences which currently sets a limit to maximum attainable count rate at FELs. The setup presented here opens up new possibilities to study the structure and dynamics in liquids.


Scientific Reports | 2015

Femtosecond X-ray absorption study of electron localization in photoexcited anatase TiO2

Fabio G. Santomauro; Andrea Lübcke; J. Rittmann; Edoardo Baldini; A. Ferrer; Mahsa Silatani; P. Zimmermann; S. Grübel; Jeremy A. Johnson; S. O. Mariager; P. Beaud; Daniel Grolimund; C.N. Borca; G. Ingold; S. L. Johnson; Majed Chergui

Transition metal oxides are among the most promising solar materials, whose properties rely on the generation, transport and trapping of charge carriers (electrons and holes). Identifying the latter’s dynamics at room temperature requires tools that combine elemental and structural sensitivity, with the atomic scale resolution of time (femtoseconds, fs). Here, we use fs Ti K-edge X-ray absorption spectroscopy (XAS) upon 3.49 eV (355 nm) excitation of aqueous colloidal anatase titanium dioxide nanoparticles to probe the trapping dynamics of photogenerated electrons. We find that their localization at Titanium atoms occurs in <300 fs, forming Ti3+ centres, in or near the unit cell where the electron is created. We conclude that electron localization is due to its trapping at pentacoordinated sites, mostly present in the surface shell region. The present demonstration of fs hard X-ray absorption capabilities opens the way to a detailed description of the charge carrier dynamics in transition metal oxides.


Physical Review Letters | 2015

Ultrafast Structural Dynamics of the Fe-Pnictide Parent Compound BaFe2As2

L. Rettig; S. O. Mariager; A. Ferrer; S. Grübel; Jeremy A. Johnson; J. Rittmann; Th. Wolf; S. L. Johnson; G. Ingold; P. Beaud; U. Staub

Using femtosecond time-resolved x-ray diffraction we investigate the structural dynamics of the coherently excited A(1g) phonon mode in the Fe-pnictide parent compound BaFe(2)As(2). The fluence dependent intensity oscillations of two specific Bragg reflections with distinctly different sensitivity to the pnictogen height in the compound allow us to quantify the coherent modifications of the Fe-As tetrahedra, indicating a transient increase of the Fe magnetic moments. By a comparison with time-resolved photoemission data, we derive the electron-phonon deformation potential for this particular mode. The value of Δμ/Δz=-(1.0-1.5)  eV/Å is comparable with theoretical predictions and demonstrates the importance of this degree of freedom for the electron-phonon coupling in the Fe pnictides.


Structural Dynamics | 2016

Identification of the dominant photochemical pathways and mechanistic insights to the ultrafast ligand exchange of Fe(CO)5 to Fe(CO)4EtOH

Kristjan Kunnus; Ida Josefsson; Ivan Rajkovic; Simon Schreck; Wilson Quevedo; Martin Beye; Christian Weniger; S. Grübel; Mirko Scholz; Dennis Nordlund; Wenkai Zhang; Robert W. Hartsock; Kelly J. Gaffney; W. F. Schlotter; J. J. Turner; Brian K. Kennedy; Franz Hennies; F.M.F. de Groot; Simone Techert; Michael Odelius; Ph. Wernet; A. Föhlisch

We utilized femtosecond time-resolved resonant inelastic X-ray scattering and ab initio theory to study the transient electronic structure and the photoinduced molecular dynamics of a model metal carbonyl photocatalyst Fe(CO)5 in ethanol solution. We propose mechanistic explanation for the parallel ultrafast intra-molecular spin crossover and ligation of the Fe(CO)4 which are observed following a charge transfer photoexcitation of Fe(CO)5 as reported in our previous study [Wernet et al., Nature 520, 78 (2015)]. We find that branching of the reaction pathway likely happens in the 1A1 state of Fe(CO)4. A sub-picosecond time constant of the spin crossover from 1B2 to 3B2 is rationalized by the proposed 1B2 → 1A1 → 3B2 mechanism. Ultrafast ligation of the 1B2 Fe(CO)4 state is significantly faster than the spin-forbidden and diffusion limited ligation process occurring from the 3B2 Fe(CO)4 ground state that has been observed in the previous studies. We propose that the ultrafast ligation occurs via 1B2 → 1A1 → 1A′ Fe(CO)4EtOH pathway and the time scale of the 1A1 Fe(CO)4 state ligation is governed by the solute-solvent collision frequency. Our study emphasizes the importance of understanding the interaction of molecular excited states with the surrounding environment to explain the relaxation pathways of photoexcited metal carbonyls in solution.


Physical Review B | 2013

Temperature-dependent electron-phonon coupling in La2−xSrxCuO4 probed by femtosecond x-ray diffraction

Barbara Mansart; Mathieu Julien Gino Cottet; Giulia F. Mancini; T. Jarlborg; Stephen B Dugdale; S. L. Johnson; S. O. Mariager; C. J. Milne; P. Beaud; S. Grübel; Jeremy A. Johnson; Teresa Kubacka; G. Ingold; Krunoslav Prsa; Henrik M. Rønnow; K. Conder; E. Pomjakushina; Majed Chergui; Fabrizio Carbone

The strength of the electron-phonon coupling parameter and its evolution throughout a solids phase diagram often determines phenomena such as superconductivity, charge- and spin-density waves. Its experimental determination relies on the ability to distinguish thermally activated phonons from those emitted by conduction band electrons, which can be achieved in an elegant way by ultrafast techniques. Separating the electronic from the out-of-equilibrium lattice subsystems, we probed their reequilibration by monitoring the transient lattice temperature through femtosecond x-ray diffraction in La2-xSrxCuO4 single crystals with x = 0.1 and 0.21. The temperature dependence of the electron-phonon coupling is obtained experimentally and shows similar trends to what is expected from the ab initio calculated shape of the electronic density of states near the Fermi energy. This study evidences the important role of band effects in the electron-lattice interaction in solids, in particular, in superconductors.


Journal of The Optical Society of America B-optical Physics | 2014

Distortion-free enhancement of terahertz signals measured by electro-optic sampling. I. Theory

Fabian D. J. Brunner; Jeremy A. Johnson; S. Grübel; A. Ferrer; S. L. Johnson; Thomas Feurer

We present three methods for the distortion-free enhancement of THz signals measured by electro-optic sampling in zinc blende-type detector crystals, e.g., ZnTe or GaP. A technique commonly used in optically heterodyne-detected optical Kerr effect spectroscopy is introduced, which is based on two measurements at opposite optical biases near the zero transmission point in a crossed polarizer detection geometry. In contrast to other techniques for an undistorted THz signal enhancement, it also works in a balanced detection scheme and does not require an elaborate procedure for the reconstruction of the true signal as the two measured waveforms are simply subtracted to remove distortions. We study three different approaches for setting an optical bias using the Jones matrix formalism and discuss them also in the framework of optical heterodyne detection. We show that there is an optimal bias point in realistic situations where a small fraction of the probe light is scattered by optical components. The experimental demonstration will be given in the second part of this two-paper series [J. Opt. Soc. Am. B, doc. ID 204877 (2014, posted online)].


Physical Review Letters | 2017

Ultrafast Formation of a Charge Density Wave State in 1T-TaS_{2}: Observation at Nanometer Scales Using Time-Resolved X-Ray Diffraction.

Claire Laulhé; T. Huber; Gabriel Lantz; A. Ferrer; S. O. Mariager; S. Grübel; J. Rittmann; Jeremy A. Johnson; Vincent Esposito; A. Lübcke; Lucas Huber; Martin Kubli; M. Savoini; V. L. R. Jacques; Laurent Cario; Benoit Corraze; Etienne Janod; G. Ingold; P. Beaud; S. L. Johnson; S. Ravy

C. Laulhé, 2, ∗ T. Huber, G. Lantz, 3 A. Ferrer, S.O. Mariager, S. Grübel, J. Rittmann, J.A. Johnson, V. Esposito, A. Lübcke, † L. Huber, M. Kubli, M. Savoini, V.L.R. Jacques, L. Cario, B. Corraze, E. Janod, G. Ingold, P. Beaud, S.L. Johnson, and S. Ravy Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP 48, F-91192 Gif-sur-Yvette, France Université Paris-Saclay (Univ. Paris-Sud), F-91405 Orsay Cedex, France Institute for Quantum Electronics, Physics Department, ETH Zurich, CH-8093 Zurich, Switzerland Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, UMR 8502, F-91405 Orsay, France Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland Institut des Matériaux Jean Rouxel UMR 6502, Université de Nantes, 2 rue de la Houssinière, F-44322 Nantes, France (Dated: September 29, 2018)


Journal of The Optical Society of America B-optical Physics | 2014

Distortion-free enhancement of terahertz signals measured by electro-optic sampling. II. Experiment

Jeremy A. Johnson; Fabian D. J. Brunner; S. Grübel; A. Ferrer; S. L. Johnson; Thomas Feurer

Three methods for distortion-free enhancement of electro-optic sampling measurements of terahertz signals are tested. In the first part of this two-paper series [J. Opt. Soc. Am B31, 904–910 (2014)], the theoretical framework for describing the signal enhancement was presented and discussed. As the applied optical bias is decreased, individual signal traces become enhanced but distorted. Here we experimentally show that nonlinear signal components that distort the terahertz electric field measurement can be removed by subtracting traces recorded with opposite optical bias values. In all three methods tested, we observe up to an order of magnitude increase in distortion-free signal enhancement, in agreement with the theory, making possible measurements of small terahertz-induced transient birefringence signals with increased signal-to-noise ratio.

Collaboration


Dive into the S. Grübel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Beaud

Paul Scherrer Institute

View shared research outputs
Top Co-Authors

Avatar

Jeremy A. Johnson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

G. Ingold

Paul Scherrer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wilson Quevedo

Helmholtz-Zentrum Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

U. Staub

Paul Scherrer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge