S. H. Kulkarni
Indian Institute of Technology Madras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. H. Kulkarni.
American Mathematical Monthly | 2004
S. H. Kulkarni
1. T. M. Apostol, Another elementary proof of Euler’s formula for ζ(2n), this MONTHLY 80 (1973) 425–431. 2. R. Ayoub, Euler and the zeta function, this MONTHLY 81 (1974) 1067–1086. 3. B. C. Berndt, Elementary evaluation of ζ(z), Math. Mag. 48 (1975) 148–154. 4. H. M. Edwards, Riemann’s Zeta Function, Academic Press, New York, 1974. 5. L. Euler, Introduction to Analysis of the Infinite, Book I (trans. J. D. Blanton), Springer-Verlag, New York, 1988. 6. K. Knopp, Theory and Application of Infinite Series, Dover, New York, 1990.
Proceedings of the American Mathematical Society | 2001
R. Balasubramanian; S. H. Kulkarni; R. Radha
It is shown that the almost Mathieu operators of the type Te n =e n-1 + λsin(2nr)e n + e n+1 where λ is real and r is a rational multiple of π and {e n :n = 1,2,3,....} an orthonormal basis for a Hilbert space, is notinvertible.
International Journal of Mathematical Education in Science and Technology | 2000
S. H. Kulkarni
A quantitative version of the Arzela-Ascoli theorem is proved. This version implies that a closed and bounded subset of C(X) is nearly compact, if and only if, it is nearly equicontinuous.
Archive | 1992
S. H. Kulkarni; Balmohan V. Limaye
Proceedings Mathematical Sciences | 2008
S. H. Kulkarni; M. T. Nair; G. Ramesh
Canadian Journal of Mathematics | 1981
S. H. Kulkarni; Balmohan V. Limaye
Indian Journal of Pure & Applied Mathematics | 2010
S. H. Kulkarni; G. Ramesh
Linear Algebra and its Applications | 2010
S. H. Kulkarni; G. Ramesh
Banach Journal of Mathematical Analysis | 2011
S. H. Kulkarni; G. Ramesh
Linear Algebra and its Applications | 2006
R. Balasubramanian; S. H. Kulkarni; R. Radha