S. Helene Richter
University of Münster
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Helene Richter.
Nature Methods | 2010
S. Helene Richter; Joseph P. Garner; Corinna Auer; Joachim Kunert; Hanno Würbel
measures to compare between-experiment variation for the standardized and heterogenized design. Whereas strain differences were relatively consistent among heterogenized experiments, they varied considerably between standardized experiments (Fig. 1a–c). In 33 of 36 measures, between-experiment variation was lower in the heterogenized design, indicating better reproducibility. We also analyzed each experiment separately as if conducted independently in different laboratories and assessed the effect of ‘strain’ on each of the 36 measures using a general linear model (GLM). Based on the 2 × 2 factorial nature of the heterogenized design and cage position in the rack, we divided each replicate experiment into four ‘blocks’, each comprising one cage per strain (Supplementary Fig. 1), and included ‘block’ nested within experiment as blocking factor in the GLM (Supplementary Methods). Whereas the effect of ‘strain’ was stable in the four heterogenized experiments, outcomes of the four standardized experiments were highly variable (Supplementary Fig. 2), suggesting that withinSystematic variation improves reproducibility of animal experiments
Behavioural Brain Research | 2012
Alexandra N. Gross; S. Helene Richter; A. Katarina J. Engel; Hanno Würbel
When kept in barren and restrictive cages, animals frequently develop stereotypic behaviour patterns that are characterized by high repetition rates, conspicuous invariance and an apparent lack of function. Although millions of animals are affected, the underlying causes and mechanisms are still unclear. Growing evidence suggests that cage-induced stereotypies may reflect pathological dysfunction within basal ganglia circuitry expressed by perseverative behaviour. In order to assess whether variation in stereotypy performance and variation in perseverative behaviour may have a common cause in ICR CD-1 mice, we assessed the effects of environmental enrichment on both phenomena. We raised 48 female ICR CD-1 mice in standard or enriched cages from three weeks to either 6 or 11 months of age and measured stereotypy level in the home cage and perseveration on an extinction task. We further examined whether enriched rearing conditions (early enrichment) protect mice from the developing stereotypies later in life and whether stereotypies developed in barren cages would persist in an enriched environment (late enrichment) by transferring standard mice to enriched cages and vice versa for 14 weeks after completion of the extinction task. We found no evidence for a causal relation between stereotypy and perseveration in mice. However, transfer to enriched cages reduced stereotypy levels significantly both at 6 and 11 months of age indicating that stereotypies had not become established yet. Finally, we found that removing enrichments at both ages did not induce higher stereotypy levels, thereby confirming earlier reports of a neuroprotective effect of early enrichment.
Behavioural Brain Research | 2011
Alexandra N. Gross; A. Katarina J. Engel; S. Helene Richter; Joseph P. Garner; Hanno Würbel
Stereotypies are repetitive, unvarying, apparently purposeless behavioural patterns. They develop in animals kept in barren environments and are highly prevalent in laboratory mice (Mus musculus), yet their underlying mechanisms have remained elusive. In humans, stereotypies are associated with several psychiatric disorders and are thought to reflect dysfunction of inhibition of motor programs mediated by the corticostriatal circuitry, resulting in recurrent perseveration (=inappropriate repetition of behavioural responses). Several studies in captive animals of different species have reported a correlation between stereotypy performance and perseverative behaviour, indicating a similar dysfunction. To examine whether stereotypies in mice correlate with recurrent perseveration and whether they are causally related, we raised 40 female ICR CD-1 mice in either barren or enriched cages from three to either six or 16 weeks of age (2 × 2 factorial design) and assessed stereotypic behaviour in the home cage and recurrent perseveration on a two-choice guessing task. Enrichment significantly reduced stereotypic behaviour both at six and 16 weeks of age and recurrent perseveration increased with age. Although enriched housing reduced the number of repetitions in the guessing task significantly, there was no clear evidence for an effect on recurrent perseveration, and recurrent perseveration did not correlate positively with stereotypy level. These findings indicate either that this test did not measure recurrent perseveration or that cage stereotypies in these mice do not reflect behavioural disinhibition as measured by recurrent perseveration.
Reproductive Toxicology | 2012
Carolin Hoyer; Miriam A. Vogt; S. Helene Richter; Gregor Zaun; Yasmin Zahedi; Stefan Maderwald; Mark E. Ladd; Elke Winterhager; Ruth Grümmer; Peter Gass
In the past three decades, magnetic resonance imaging (MRI) has been increasingly used in obstetrics to aid diagnostics of maternal and fetal conditions and has generally been considered a safe imaging method. However, the development of higher-performance systems employing, for example, stronger fields to improve the techniques diagnostic potential, necessitates on-going safety evaluation. Rodent studies provide an excellent opportunity to investigate not only acute but also long-term effects of magnetic field exposure in a systematic manner, and a behavioral analysis might help to uncover subtler effects which might result from magnetic field exposure of the vulnerable developing brain. We conducted a comprehensive investigation of emotional and cognitive behavior in adult mice which had been repeatedly exposed to a 7 Tesla static magnetic field in utero. Using well-validated tests, we did not observe any adverse behavioral alterations regarding emotional behavior as well as spatial and emotional learning.
Frontiers in Behavioral Neuroscience | 2015
Carina Bodden; S. Helene Richter; Rebecca S. Schreiber; Vanessa Kloke; Joachim Gerß; Rupert Palme; Klaus-Peter Lesch; Lars Lewejohann; Sylvia Kaiser; Norbert Sachser
Behavioral profiles are influenced by both positive and negative experiences as well as the genetic disposition. Traditionally, accumulating adversity over lifetime is considered to predict increased anxiety-like behavior (“allostatic load”). The alternative “mismatch hypothesis” suggests increased levels of anxiety if the early environment differs from the later-life environment. Thus, there is a need for a whole-life history approach to gain a deeper understanding of how behavioral profiles are shaped. The aim of this study was to elucidate the effects of life history on the behavioral profile of mice varying in serotonin transporter (5-HTT) genotype, an established mouse model of increased anxiety-like behavior. For this purpose, mice grew up under either adverse or beneficial conditions during early phases of life. In adulthood, they were further subdivided so as to face a situation that either matched or mismatched the condition experienced so far, resulting in four different life histories. Subsequently, mice were tested for their anxiety-like and exploratory behavior. The main results were: (1) Life history profoundly modulated the behavioral profile. Surprisingly, mice that experienced early beneficial and later escapable adverse conditions showed less anxiety-like and more exploratory behavior compared to mice of other life histories. (2) Genotype significantly influenced the behavioral profile, with homozygous 5-HTT knockout mice displaying highest levels of anxiety-like and lowest levels of exploratory behavior. Our findings concerning life history indicate that the absence of adversity does not necessarily cause lower levels of anxiety than accumulating adversity. Rather, some adversity may be beneficial, particularly when following positive events. Altogether, we conclude that for an understanding of behavioral profiles, it is not sufficient to look at experiences during single phases of life, but the whole life history has to be considered.
Behavioural Brain Research | 2013
Johannes Fuss; S. Helene Richter; Jörg Steinle; Gerald Deubert; Rainer Hellweg; Peter Gass
Individual housing of social species is a common phenomenon in laboratory animal facilities. Single housing, however, is known to inflict social deprivation with a number of detrimental consequences. Aiming to improve housing conditions of single housed rodents, we investigated the simulation of social housing by mirrors in a series of behavioural experiments and biochemical parameters in mice. We found that chronic mirror-image stimulation increased exploratory behaviours in the holeboard and novel cage tests, but did not alter anxiety, locomotor, or depression-like behaviours. Moreover, no influence on visual recognition memory was observed. Hippocampal brain-derived neurotrophic factor (BDNF) levels, a biomarker for enrichment effects, were unaltered. In line, mirror-image stimulation did not alter home cage behaviour in mice housed with and without mirrors when left undisturbed. Thus, though we found subtle behavioural effects after long-term mirror exposure, we conclude that the simulation of social housing by mirrors is not sufficient to gain the presumably beneficial outcomes induced by social housing.
Frontiers in Behavioral Neuroscience | 2016
Neele Meyer; S. Helene Richter; Rebecca S. Schreiber; Vanessa Kloke; Sylvia Kaiser; Klaus-Peter Lesch; Norbert Sachser
Anxiety and aggression are part of the behavioral repertoire of humans and animals. However, in their exaggerated form both can become maladaptive and result in psychiatric disorders. On the one hand, genetic predisposition has been shown to play a crucial modulatory role in anxiety and aggression. On the other hand, social experiences have been implicated in the modulation of these traits. However, so far, mainly experiences in early life phases have been considered crucial for shaping anxiety-like and aggressive behavior, while the phase of adolescence has largely been neglected. Therefore, the aim of the present study was to elucidate how levels of anxiety-like and aggressive behavior are shaped by social experiences during adolescence and serotonin transporter (5-HTT) genotype. For this purpose, male mice of a 5-HTT knockout mouse model including all three genotypes (wildtype, heterozygous and homozygous 5-HTT knockout mice) were either exposed to an adverse social situation or a beneficial social environment during adolescence. This was accomplished in a custom-made cage system where mice experiencing the adverse environment were repeatedly introduced to the territory of a dominant opponent but had the possibility to escape to a refuge cage. Mice encountering beneficial social conditions had free access to a female mating partner. Afterwards, anxiety-like and aggressive behavior was assessed in a battery of tests. Surprisingly, unfavorable conditions during adolescence led to a decrease in anxiety-like behavior and an increase in exploratory locomotion. Additionally, aggressive behavior was augmented in animals that experienced social adversity. Concerning genotype, homozygous 5-HTT knockout mice were more anxious and less aggressive than heterozygous 5-HTT knockout and wildtype mice. In summary, adolescence is clearly an important phase in which anxiety-like and aggressive behavior can be shaped. Furthermore, it seems that having to cope with challenge during adolescence instead of experiencing throughout beneficial social conditions leads to reduced levels of anxiety-like behavior.
Frontiers in Behavioral Neuroscience | 2014
S. Helene Richter; Anne S. Vogel; Kai Ueltzhöffer; Chiara Muzzillo; Miriam A. Vogt; Katja Lankisch; Diana J. N. Armbruster-Genç; Marco Riva; Christian J. Fiebach; Peter Gass; Barbara Vollmayr
The abilities to either flexibly adjust behavior according to changing demands (cognitive flexibility) or to maintain it in the face of potential distractors (cognitive stability) are critical for adaptive behavior in many situations. Recently, a novel human paradigm has found individual differences of cognitive flexibility and stability to be related to common prefrontal networks. The aims of the present study were, first, to translate this paradigm from humans to mice and, second, to test conceptual predictions of a computational model of prefrontal working memory mechanisms, the Dual State Theory, which assumes an antagonistic relation between cognitive flexibility and stability. Mice were trained in a touchscreen-paradigm to discriminate visual cues. The task involved “ongoing” and cued “switch” trials. In addition distractor cues were interspersed to test the ability to resist distraction, and an ambiguous condition assessed the spontaneous switching between two possible responses without explicit cues. While response times did not differ substantially between conditions, error rates (ER) increased from the “ongoing” baseline condition to the most complex condition, where subjects were required to switch between two responses in the presence of a distracting cue. Importantly, subjects switching more often spontaneously were found to be more distractible by task irrelevant cues, but also more flexible in situations, where switching was required. These results support a dichotomy of cognitive flexibility and stability as predicted by the Dual State Theory. Furthermore, they replicate critical aspects of the human paradigm, which indicates the translational potential of the testing procedure and supports the use of touchscreen procedures in preclinical animal research.
Frontiers in Behavioral Neuroscience | 2016
Jasmin Remmes; Carina Bodden; S. Helene Richter; Jörg Lesting; Norbert Sachser; Hans-Christian Pape; Thomas Seidenbecher
Behavioral profiles are strongly shaped by an individuals whole life experience. The accumulation of negative experiences over lifetime is thought to promote anxiety-like behavior in adulthood (“allostatic load hypothesis”). In contrast, the “mismatch hypothesis” of psychiatric disease suggests that high levels of anxiety-like behavior are the result of a discrepancy between early and late environment. The aim of the present study was to investigate how different life histories shape the expression of anxiety-like behavior and modulate fear memory. In addition, we aimed to clarify which of the two hypotheses can better explain the modulation of anxiety and fear. For this purpose, male mice grew up under either adverse or beneficial conditions during early phase of life. In adulthood they were further subdivided in groups that either matched or mismatched the condition experienced before, resulting in four different life histories. The main results were: (i) Early life benefit followed by late life adversity caused decreased levels of anxiety-like behavior. (ii) Accumulation of adversity throughout life history led to impaired fear extinction learning. Late life adversity as compared to late life benefit mainly affected extinction training, while early life adversity as compared to early life benefit interfered with extinction recall. Concerning anxiety-like behavior, the results do neither support the allostatic load nor the mismatch hypothesis, but rather indicate an anxiolytic effect of a mismatched early beneficial and later adverse life history. In contrast, fear memory was strongly affected by the accumulation of adverse experiences over the lifetime, therefore supporting allostatic load hypothesis. In summary, this study highlights that anxiety-like behavior and fear memory are differently affected by specific combinations of adverse or beneficial events experienced throughout life.
Neuroscience Letters | 2014
Juan M. Lima-Ojeda; Miriam A. Vogt; S. Helene Richter; Christof Dormann; Miriam Schneider; Peter Gass; Dragos Inta
Several prospective studies indicated perinatal hypoxia as risk factor for psychiatric disorders like schizophrenia. It is thought that hypoxia prior to or during birth may contribute to alterations leading to the protracted clinical manifestation during young adulthood. However, only a small fraction of children with a history of perinatal hypoxia develop later psychotic symptoms, therefore it is not known if hypoxia alone is sufficient to trigger long-term behavioral changes. Here we exposed C57BL/6 mice from postnatal day 3-7 (P3-P7) to two established paradigms of chronic mild hypoxia (10% ambient O2), intermittent and continuous. Subsequently, mice were analysed during young adult stages using several basic behavioral tests. Previous studies demonstrated severe, but only transient, cortical damage in these paradigms; it is not clear, if these reversible morphological changes are accompanied by long-term behavioral effects. We found that neither intermittent nor continuous perinatal hypoxia induced long-term behavioral alterations. This may be due to the high regenerative capacity of the perinatal brain. Other possibilities include a potential resistance to perinatal hypoxia of the mouse strain used here or a level of hypoxia that was insufficient to trigger significant behavioral changes. Therefore, our data do not exclude a role of perinatal hypoxia as risk factor for psychiatric disorders. They rather suggest that either other, more severe hypoxic conditions like anoxia, or the presence of additional factors (as genetic risk factors) are necessary for generating long-term behavioral abnormalities.