Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Henning is active.

Publication


Featured researches published by S. Henning.


Journal of Geophysical Research | 2010

Soluble Mass, Hygroscopic Growth, and Droplet Activation of Coated Soot Particles during LACIS Experiment in November (LExNo)

S. Henning; Heike Wex; T. Hennig; Alexei Kiselev; Jefferson R. Snider; D. Rose; U. Dusek; Göran Frank; Ulrich Pöschl; Adam Kristensson; Merete Bilde; R. Tillmann; Astrid Kiendler-Scharr; Thomas F. Mentel; S. Walter; J. Schneider; C. Wennrich; Frank Stratmann

The LACIS Experiment in November (LExNo) campaign was conducted in November 2005 at the Atmospheric Composition Change the European Network of Excellence (ACCENT) site Leipzig Aerosol Cloud Interaction Simulator (LACIS). The goal of LExNo was to provide deeper insight into the activation properties of coated soot particles imitating aged combustion aerosol particles. The aerosols were prepared by starting with spark-generated soot particles. In some experiments the soot particles were compacted by exposure to propanol vapor; in others this step was bypassed. The soot was thermally coated with ammonium sulfate, levoglucosan, or a mixture of both ammonium sulfate and levoglucosan. The synthesized particles were investigated using aerosol mass spectrometry, a Hygroscopicity Tandem differential mobility analyzer, two Wyoming static diffusion cloud condensation nuclei (CCN) instruments, a Droplet Measurement Technologies continuous flow CCN instrument, and LACIS. A close correlation between the hygroscopic growth factor at 98% relative humidity and the critical supersaturation of CCN activation was observed. Closure between hygroscopic growth, CCN activation, and chemical composition of the investigated particles was achieved with two different single-parameter Kohler model approaches and with a third approach, a standard Kohler model using as input parameter the soluble mass as determined by aerosol mass spectrometry. (Less)


Tellus B | 2002

Size-dependent aerosol activation at the high-alpine site Jungfraujoch (3580 m asl)

S. Henning; E. Weingartner; S. Schmidt; Manfred Wendisch; H. W. Gäggeler; U. Baltensperger

Abstract Microphysical and chemical aerosol properties and their influence on cloud formation were studied in a field campaign at the high-alpine site Jungfraujoch (JFJ, 3580 m asl). Due to its altitude, this site is suitable for ground-based in-cloud measurements, with a high cloud frequency of 40%. Dry total and interstitial aerosol size distributions [18 nm <particle diameter (Dp)<800 nm] were determined with a time resolution of 6 min. A forward scattering spectrometer probe (FSSP-100) measured the cloud droplet size distribution, and a particle volume monitor (PVM-100) was used to measure liquid water content (LWC). In addition, the aerosol chemical composition (major soluble ions) was determined in two size classes (total and sub-micron particles). Agreement within the range of measurement uncertainties was observed between the droplet number concentrations derived from the aerosol size distribution measurements (total minus interstitial) and those measured by the FSSP. The observed particle diameter at 50% activation (D50) was typically around 100 nm for LWC > 0.15 g m−3. Below this value, D50 increased with decreasing LWC. A dependence of D50 on the accumulation mode (Dp>100 nm) number concentration (Ntot,Dp>100) was only found for concentrations less than 100 cm−3. For higher values of Ntot,Dp>100 the D50 remained constant. Furthermore, a decrease of the effective radius of cloud droplets (Reff) with increasing Ntot,Dp>100 was observed, providing experimental evidence for the microphysical relation predicted by the Twomey effect. A modified Köhler model was used to quantify the critical supersaturation for the aerosol observed at the JFJ. Ambient supersaturations were determined from the derived supersaturation curve and the calculated D50. As an example, a critical supersaturation of 0.2% was found for 100 nm particles.


Journal of Geophysical Research | 2010

Examination of laboratory-generated coated soot particles: An overview of the LACIS Experiment in November (LExNo) campaign

Frank Stratmann; Merete Bilde; U. Dusek; Göran Frank; T. Hennig; S. Henning; Astrid Kiendler-Scharr; A. Kiselev; Adam Kristensson; Ingo Lieberwirth; Thomas F. Mentel; Ulrich Pöschl; D. Rose; J. Schneider; Jefferson R. Snider; R. Tillmann; S. Walter; Heike Wex

In the suite of laboratory measurements described here and in companion articles we deal with the hygroscopic growth and activation behavior of coated soot particles synthesized to mimic those of an atmospheric aerosol originating from biomass combustion. The investigations were performed during the measurement campaign LACIS Experiment in November (LExNo) which took place at the Leipzig Aerosol Cloud Interaction Simulator (LACIS). The specific goals of this campaign were (1) to perform a critical supersaturation measurement intercomparison using data sets from three different cloud condensation nucleus (CCN) instruments (two static thermal gradient type, one stream-wise thermal gradient type) and LACIS, (2) to examine particle hygroscopic growth (hydrated particle size as function of relative humidity) for particle characteristics such as aerosol mass spectrometer (AMS) measured soluble mass and particle morphology, and (3) to relate critical supersaturations derived from both measurements of soluble mass and high humidity tandem differential mobility analyzer (HH-TDMA) determined growth factors to critical supersaturations measured by means of the CCN instruments. This paper provides information on the particle synthesis techniques used during LExNo, an overview concerning the particle characterization measurements performed, and, by proving relations between measured composition, hygroscopic growth, and activation data, lay the foundations for the detailed investigations described in the companion studies. In the context of the present paper, excellent agreement of the critical supersaturations measured with three different CCN instruments and LACIS was observed. Furthermore, clear relations between coating masses determined with AMS and both hygroscopic growth factors at 98% RH and measured critical supersaturations could be seen. Also, a strong correlation between measured hygroscopic growth (growth factors at 98%) and measured critical supersaturation for all of the differently coated soot particles (coating substances being levoglucosan and/or ammonium (hydrogen) sulfate) was found. This is clearly indicative of the possibility of predicting the critical supersaturation of coated soot particles based on hygroscopic growth measurements using Kohler theory. (Less)


Tellus B | 2003

Simultaneous dry and ambient measurements of aerosol size distributions at the Jungfraujoch

Remo Nessler; Nicolas Bukowiecki; S. Henning; E. Weingartner; B. Calpini; U. Baltensperger

In a field campaign at the high-alpine site Jungfraujoch (JFJ, 3580 m asl), in-situ aerosol size distributions were measured simultaneously outdoor at ambient conditions (temperature T < −5 °C) and indoor at dry conditions (T ≈ 25 °C and relative humidity RH < 10%) by means of two scanning mobility particle sizers (SMPS). In addition, measurements of hygroscopic growth factors were performed with a hygroscopicity tandem differential mobility analyzer (H-TDMA). The measured growth factors, being a monotonic function of the relative humidity (RH), were fitted with a modified Köhler model. A comparison between dry and ambient size distributions shows two main features: First, the dry total number concentration is often considerably smaller (on average 28%) than the ambient total number concentration, and is most likely due to the evaporation of volatile material at the higher temperature. These particle losses mainly concern small particles (dry diameter D ≲ 100 nm), and therefore have only a minimal affect on the surface and volume concentrations. A slight correlation between ambient RH and the magnitude of particle loss was observed, but it was not possible to establish an empirical model for a quantification. Second, the dry number size distribution is shifted towards smaller particles, reflecting the hygroscopic behavior of the aerosols. To link the ambient and the dry size distributions we modeled this shift using the H-TDMA measurements and a modified Köhler model. The corrected dry surface and volume concentrations are in good agreement with the ambient measurements for the whole RH range, but the correction works best for RH < 80%. The results indicate that size distribution data measured at indoor conditions (i.e. dry and warm) may be successfully corrected to reflect ambient conditions, which are relevant for determining the impact of aerosol on climate.


Bulletin of the American Meteorological Society | 2017

The global aerosol synthesis and science project (GASSP): Measurements and modeling to reduce uncertainty

C. L. Reddington; Kenneth S. Carslaw; P. Stier; N. A. J. Schutgens; Hugh Coe; Dantong Liu; J. D. Allan; J. Browse; K. J. Pringle; L. A. Lee; Masaru Yoshioka; Jill S. Johnson; Leighton A. Regayre; D. V. Spracklen; G. W. Mann; Antony D. Clarke; M. Hermann; S. Henning; Heike Wex; Thomas Kristensen; W. R. Leaitch; Ulrich Pöschl; D. Rose; Meinrat O. Andreae; Julia Schmale; Yutaka Kondo; N. Oshima; Joshua P. Schwarz; Athanasios Nenes; Bruce E. Anderson

The largest uncertainty in the historical radiative forcing of climate is caused by changes in aerosol particles due to anthropogenic activity. Sophisticated aerosol microphysics processes have been included in many climate models in an effort to reduce the uncertainty. However, the models are very challenging to evaluate and constrain because they require extensive in-situ measurements of the particle size distribution, number concentration and chemical composition that are not available from global satellite observations. The Global Aerosol Synthesis and Science Project (GASSP) aims to improve the robustness of global aerosol models by combining new methodologies for quantifying model uncertainty, an extensive global dataset of aerosol in-situ microphysical and chemical measurements, and new ways to assess the uncertainty associated with comparing sparse point measurements with low resolution models. GASSP has assembled over 45,000 hours of measurements from ships and aircraft as well as data from over 350 ground stations. The measurements have been harmonized into a standardized format that is easily used by modellers and non-specialist users. Available measurements are extensive, but they biased to polluted regions of the northern hemisphere, leaving large pristine regions and many continental areas poorly sampled. The aerosol radiative forcing uncertainty can be reduced using a rigorous model-data synthesis approach. Nevertheless, our research highlights significant remaining challenges because of the difficulty of constraining many interwoven model uncertainties simultaneously. Although the physical realism of global aerosol models still needs to be improved, the uncertainty in aerosol radiative forcing will be reduced most effectively by systematically and rigorously constraining the models using extensive syntheses of measurements.


Scientific Data | 2018

Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition

Julia Schmale; S. Henning; Bas Henzing; Helmi Keskinen; K. Sellegri; Jurgita Ovadnevaite; A. Bougiatioti; N. Kalivitis; Iasonas Stavroulas; Anne Jefferson; Minsu Park; P. Schlag; Adam Kristensson; Yoko Iwamoto; K. J. Pringle; C. L. Reddington; Pasi Aalto; Mikko Äijälä; Urs Baltensperger; Jakub Bialek; Wolfram Birmili; Nicolas Bukowiecki; Mikael Ehn; A. M. Fjaeraa; Markus Fiebig; Göran Frank; Roman Fröhlich; Arnoud Frumau; Masaki Furuya; E. Hammer

Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.


Atmospheric Chemistry and Physics | 2007

Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch

J. Cozic; Bart Verheggen; E. Weingartner; J. Crosier; Keith N. Bower; M. Flynn; Hugh Coe; S. Henning; Matej Steinbacher; Stephan Henne; M. Collaud Coen; Andreas Petzold; Urs Baltensperger


Atmospheric Chemistry and Physics | 2011

Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain

Pengfei Liu; C. S. Zhao; T. Göbel; E. Hallbauer; A. Nowak; L. Ran; W. Y. Xu; Z. Z. Deng; N. Ma; K. Mildenberger; S. Henning; Frank Stratmann; A. Wiedensohler


Atmospheric Chemistry and Physics | 2011

Aerosol optical properties in the North China Plain during HaChi campaign: an in-situ optical closure study

N. Ma; C. S. Zhao; A. Nowak; T. Müller; S. Pfeifer; Yafang Cheng; Z. Z. Deng; Pengfei Liu; W. Y. Xu; L. Ran; P. Yan; T. Göbel; E. Hallbauer; K. Mildenberger; S. Henning; J. Yu; L. L. Cheng; X. J. Zhou; Frank Stratmann; A. Wiedensohler


Geophysical Research Letters | 2007

Hygroscopic growth and measured and modeled critical super‐saturations of an atmospheric HULIS sample

Heike Wex; T. Hennig; Imre Salma; Rita Ocskay; A. Kiselev; S. Henning; A. Massling; Alfred Wiedensohler; Frank Stratmann

Collaboration


Dive into the S. Henning's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge