Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Hulin is active.

Publication


Featured researches published by S. Hulin.


Plasma Physics and Controlled Fusion | 2009

Fast-electron transport in cylindrically laser-compressed matter

F. Perez; M. Koenig; D. Batani; S. D. Baton; F. N. Beg; C. Benedetti; E. Brambrink; S Chawla; F Dorchies; C Fourment; M. Galimberti; La Gizzi; R. Heathcote; D P Higginson; S. Hulin; R. Jafer; P. Koester; L. Labate; K. L. Lancaster; A. J. Mackinnon; A. McPhee; W. Nazarov; Ph. Nicolaï; J. Pasley; A Ravasio; M. Richetta; J J Santos; A. Sgattoni; Ch. Spindloe; B. Vauzour

Experimental and theoretical results of relativistic electron transport in cylindrically compressed matter are presented. This experiment, which is a part of the HiPER roadmap, was achieved on the VULCAN laser facility (UK) using four long pulses beams (~4 × 50 J, 1 ns, at 0.53 µm) to compress a hollow plastic cylinder filled with plastic foam of three different densities (0.1, 0.3 and 1 g cm−3). 2D simulations predict a density of 2–5 g cm−3 and a plasma temperature up to 100 eV at maximum compression. A short pulse (10 ps, 160 J) beam generated fast electrons that propagate through the compressed matter by irradiating a nickel foil at an intensity of 5 × 1018 W cm−2. X-ray spectrometer and imagers were implemented in order to estimate the compressed plasma conditions and to infer the hot electron characteristics. Results are discussed and compared with simulations.


Physics of Plasmas | 2011

Proton radiography of laser-driven imploding target in cylindrical geometry

L. Volpe; D. Batani; B. Vauzour; Ph. Nicolaï; J. J. Santos; C. Regan; A. Morace; F. Dorchies; C. Fourment; S. Hulin; F. Perez; S. D. Baton; K. L. Lancaster; M. Galimberti; R. Heathcote; M. Tolley; Ch. Spindloe; P. Koester; L. Labate; L. A. Gizzi; C. Benedetti; A. Sgattoni; M. Richetta; J. Pasley; F. N. Beg; S. Chawla; D.P. Higginson; A. G. MacPhee

An experiment was done at the Rutherford Appleton Laboratory (Vulcan laser petawatt laser) to study fast electron propagation in cylindrically compressed targets, a subject of interest for fast ignition. This was performed in the framework of the experimental road map of HiPER (the European high power laser energy research facility project). In the experiment, protons accelerated by a picosecond-laser pulse were used to radiograph a 220 μm diameter cylinder (20 μm wall, filled with low density foam), imploded with ∼200 J of green laser light in four symmetrically incident beams of pulse length 1 ns. Point projection proton backlighting was used to get the compression history and the stagnation time. Results are also compared to those from hard x-ray radiography. Detailed comparison with two-dimensional numerical hydrosimulations has been done using a Monte Carlo code adapted to describe multiple scattering and plasma effects. Finally we develop a simple analytical model to estimate the performance of prot...


Plasma Physics and Controlled Fusion | 2009

Fast electron propagation in high density plasmas created by shock wave compression

J. J. Santos; D. Batani; P. McKenna; S. D. Baton; F Dorchies; A Dubrouil; C Fourment; S. Hulin; Ph. Nicolaï; M. Veltcheva; P Carpeggiani; M. N. Quinn; E. Brambrink; M. Koenig; M Rabec Le Glohaec; Ch. Spindloe; M. Tolley

We present one of the first results of relativistic laser intensities of the transport of fast electrons in high density and warm plasmas. The fast electrons are produced by the interaction of 40 J, 1 ps, 5 × 1019 W cm−2 laser pulses with solid foil targets. A 200 J, 1.5 ns laser focalized over a 500 µm diameter zone on the opposite side of the foil is used to create a shock propagating through and compressing the target to 2-3 times its solid density before the relativistic interaction. For both the solid and the compressed cases, the fast electron transport divergence and range are investigated, via the Kα emission from an embedded copper layer, for a conducting (aluminium) and an insulating (plastic) target material.


Physics of Plasmas | 2011

Laser-driven cylindrical compression of targets for fast electron transport study in warm and dense plasmas

B. Vauzour; F. Pérez; L. Volpe; K. L. Lancaster; Ph. Nicolaï; D. Batani; S. D. Baton; F. N. Beg; C. Benedetti; E. Brambrink; S. Chawla; F. Dorchies; C. Fourment; M. Galimberti; La Gizzi; R. Heathcote; D.P. Higginson; S. Hulin; R. Jafer; P. Köster; L. Labate; A. J. Mackinnon; A. G. MacPhee; W. Nazarov; J. Pasley; C. Regan; X. Ribeyre; M. Richetta; G. Schurtz; A. Sgattoni

Fast ignition requires a precise knowledge of fast electron propagation in a dense hydrogen plasma. In this context, a dedicated HiPER (High Power laser Energy Research) experiment was performed on the VULCAN laser facility where the propagation of relativistic electron beams through cylindrically compressed plastic targets was studied. In this paper, we characterize the plasma parameters such as temperature and density during the compression of cylindrical polyimide shells filled with CH foams at three different initial densities. X-ray and proton radiography were used to measure the cylinder radius at different stages of the compression. By comparing both diagnostics results with 2D hydrodynamic simulations, we could infer densities from 2 to 11 g/cm3 and temperatures from 30 to 120 eV at maximum compression at the center of targets. According to the initial foam density, kinetic, coupled (sometimes degenerated) plasmas were obtained. The temporal and spatial evolution of the resulting areal densities a...


Plasma Physics and Controlled Fusion | 2009

X-ray absorption for the study of warm dense matter

Lévy A; F. Dorchies; M. Harmand; C. Fourment; S. Hulin; O. Peyrusse; J. J. Santos; P. Antici; P. Audebert; J. Fuchs; L. Lancia; A. Mancic; M. Nakatsutsumi; S Mazevet; V Recoules; P Renaudin; S. Fourmaux

A time-resolved ultrafast x-ray spectrometer is developed in order to extract the x-ray absorption near-edge spectroscopy (XANES) structure of an Al sample in the warm dense matter regime. In this context, an intense, broadband, short (ps) x-ray source based on the M-band emission from high-Z plasmas is optimized to maximize the photon flux around the Al K-edge. An experiment is reported, devoted to probe a solid Al foil isochorically heated by laser-produced protons up to 3?eV. The experimental x-ray spectra lead to an estimation of the electron temperature with an accuracy of 15%. In good agreement with two different theoretical approaches, the observed progressive smoothing of the XANES structures is clearly related to a significant loss of ion?ion correlation.


Physics of Plasmas | 2009

Broad M-band multi-keV x-ray emission from plasmas created by short laser pulses

M. Harmand; F. Dorchies; O. Peyrusse; D. Descamps; C. Fourment; S. Hulin; S. Petit; J. J. Santos

The investigation of the broad M-band x-ray emission from high-Z plasmas created by a laser, with a 30 fs to 3 ps pulse duration and achieving 1015–17 W/cm2 on target, is reported. Experimental emission spectra are measured in the energy range from 1.50 to 1.75 keV and discussed as potential backlighting x-ray sources for time-resolved x-ray absorption spectroscopy studies. They are compared with theoretical nonlocal thermodynamic equilibrium calculations of x-ray emission.


Review of Scientific Instruments | 2016

Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the “PETawatt Aquitaine Laser”

G. Boutoux; D. Batani; F. Burgy; J.-E. Ducret; P. Forestier-Colleoni; S. Hulin; N. Rabhi; A. Duval; L. Lecherbourg; C. Reverdin; K. Jakubowska; C. I. Szabo; S. Bastiani-Ceccotti; F. Consoli; A. Curcio; R. De Angelis; F. Ingenito; J. Baggio; D. Raffestin

Thanks to their high dynamic range and ability to withstand electromagnetic pulse, imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. In the framework of the development of the diagnostics for the Petawatt Aquitaine Laser facility, we present an absolute calibration and spatial resolution study of five different available types of IP (namely, MS-SR-TR-MP-ND) performed by using laser-induced K-shell X-rays emitted by a solid silver target irradiated by the laser ECLIPSE at CEntre Lasers Intenses et Applications. In addition, IP sensitivity measurements were performed with a 160 kV X-ray generator at CEA DAM DIF, where the absolute response of IP SR and TR has been calibrated to X-rays in the energy range 8-75 keV with uncertainties of about 15%. Finally, the response functions have been modeled in Monte Carlo GEANT4 simulations in order to reproduce experimental data. Simulations enable extrapolation of the IP response functions to photon energies from 1 keV to 1 GeV, of interest, e.g., for laser-driven radiography.


Plasma Physics and Controlled Fusion | 2011

Proton radiography of cylindrical laser-driven implosions

L. Volpe; R Jafer; B. Vauzour; Ph. Nicolaï; J. J. Santos; F Dorchies; C Fourment; S. Hulin; C. Regan; F. Perez; S. D. Baton; K. L. Lancaster; M. Galimberti; R. Heathcote; M. Tolley; Ch. Spindloe; W. Nazarov; P. Koester; L. Labate; La Gizzi; C. Benedetti; A. Sgattoni; M Richetta; J. Pasley; F. N. Beg; S Chawla; D.P. Higginson; A. G. MacPhee; D. Batani

A recent experiment was performed at the Rutherford Appleton Laboratory (UK) to study fast electron propagation in cylindrically compressed targets, a subject of interest for fast ignition. In this experiment, protons accelerated by a picosecond laser pulse have been used to radiograph a 220 µm diameter cylinder (10 µm wall filled with 0.1 g/cc foam), imploded with _ 200 J of green laser light in 4 symmetrically incident beams of wavelength and pulse length 1 ns. Point projection proton backlighting was used to measure the compression degree as well as the stagnation time. Results were also compared to those from a hard X-ray radiography diagnostics. Finally, Monte Carlo simulations of proton propagation in the cold and in the compressed targets allowed a detailed comparison with 2D numerical hydro simulations.


Review of Scientific Instruments | 2010

Double conical crystal x-ray spectrometer for high resolution ultrafast x-ray absorption near-edge spectroscopy of Al K edge

Lévy A; F. Dorchies; C. Fourment; M. Harmand; S. Hulin; J. J. Santos; D. Descamps; S. Petit; R. Bouillaud

An x-ray spectrometer devoted to dynamical studies of transient systems using the x-ray absorption fine spectroscopy technique is presented in this article. Using an ultrafast laser-induced x-ray source, this optical device based on a set of two potassium acid phthalate conical crystals allows the extraction of x-ray absorption near-edge spectroscopy structures following the Al absorption K edge. The proposed experimental protocol leads to a measurement of the absorption spectra free from any crystal reflectivity defaults and shot-to-shot x-ray spectral fluctuation. According to the detailed analysis of the experimental results, a spectral resolution of 0.7 eV rms and relative fluctuation lower than 1% rms are achieved, demonstrated to be limited by the statistics of photon counting on the x-ray detector.


Review of Scientific Instruments | 2015

Measurement of reflectivity of spherically bent crystals using Kα signal from hot electrons produced by laser-matter interaction.

L. Antonelli; P. Forestier-Colleoni; G. Folpini; R. Bouillaud; Anatoly Ya. Faenov; L. Fedeli; C. Fourment; L. Giuffrida; S. Hulin; Sergey A. Pikuz; J. J. Santos; L. Volpe; D. Batani

In an experiment at the laser facility ECLIPSE of the CELIA laboratory, University of Bordeaux, we measure the reflectivity of spherically bent crystals that are commonly used to investigate the propagation of fast electrons through the Kα radiation they generate in matter. The experimental reflectivity compares well with predictions from a ray-tracing code that takes into account the specific geometry, although the crystals seem to suffer from aging problems.

Collaboration


Dive into the S. Hulin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Fourment

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Dorchies

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Vauzour

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. L. Lancaster

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

F. Perez

École Polytechnique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge