Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S.J. Etherington is active.

Publication


Featured researches published by S.J. Etherington.


The Journal of Neuroscience | 2011

Postnatal Development of Intrinsic and Synaptic Properties Transforms Signaling in the Layer 5 Excitatory Neural Network of the Visual Cortex

S.J. Etherington; Stephen R. Williams

Information flow in neocortical circuits is regulated by two key parameters: intrinsic neuronal properties and the short-term activity-dependent plasticity of synaptic transmission. Using multineuronal whole-cell voltage recordings, we characterized the postnatal maturation of the electrophysiological properties and short-term plasticity of excitatory synaptic transmission between pairs of layer 5 (L5) pyramidal neurons (n = 158) in acute slices of rat visual cortex over the first postnatal month. We found that the intrinsic and synaptic properties of L5 pyramidal neurons develop in parallel. Before postnatal day 15 (P15), intrinsic electrophysiological properties were tuned to low-frequency operation, characterized by high apparent input resistance, a long membrane time constant, and prolonged somatic action potentials. Unitary excitatory synaptic potentials were of large amplitude (P11–P15; median, 514 μV), but showed pronounced use-dependent depression during prolonged regular and physiologically relevant presynaptic action potential firing patterns. In contrast, in mature animals we observed a developmental decline of the peak amplitude of unitary EPSPs (P25–P29; median, 175 μV) paralleled by a decrease in apparent input resistance, membrane time constant, and somatic action potential duration. Notably, synaptic signaling of complex action potential firing patterns was also transformed, with P25–P29 connections faithfully signaling action potential trains at frequencies up to 40 Hz (1st to 50th action potential ratio, 0.91 ± 0.12). Postnatal refinement of intrinsic properties and short-term plasticity therefore transforms the capacity of the L5 excitatory neural network of the visual cortex to generate and process patterns of action potential firing and contribute to network activity.


The Journal of Physiology | 2004

Postsynaptic production of nitric oxide implicated in long-term depression at the mature amphibian (Bufo marinus) neuromuscular junction

S.J. Etherington; Alan W. Everett

We report here evidence for endogenous NO signalling in long‐term (> 1 h) synaptic depression at the neuromuscular junction induced by 20 min of 1 Hz nerve stimulation. Synaptic depression was characterized by a 46% reduction in the end‐plate potential (EPP) amplitude and a 21% decrease in miniature EPP (MEPP) frequency, but no change to MEPP amplitude, indicating a reduction in evoked quantal release. Both the membrane‐impermeant NO scavenger cPTIO and the NOS inhibitor+ release from the sarcoplasmic reticulum and muscle contraction were blocked with dantrolene. These data suggest that the depression depends on transmission, but not muscle contraction. The calcineurin inhibitors cyclosporin A and FK506, as well as ODQ, an inhibitor of NO‐sensitive soluble guanylyl cyclase, Rp‐8‐pCPT‐cGMPS, an inhibitor of cGMP‐dependent protein kinase, and the calmodulin antagonist phenoxybenzamine also blocked depression. We propose that low frequency synaptic transmission leads to production of NO at the synapse and depression of transmitter release via a cGMP‐dependent mechanism. The NO could be generated either directly from the muscle, or possibly from the Schwann cell in response to an unidentified muscle‐derived messenger. We showed that the long‐lasting depression of transmitter release was due to sustained activity of the NO signalling pathway, and suggest dephosphorylation of NOS by calcineurin as the basis for continued NO production.


Neuroscience | 2016

Low-intensity repetitive magnetic stimulation lowers action potential threshold and increases spike firing in layer 5 pyramidal neurons in vitro

Alexander Tang; I.H.K. Hong; Laura J. Boddington; Andrew Garrett; S.J. Etherington; John J. Reynolds; Jennifer Rodger

Repetitive transcranial magnetic stimulation (rTMS) has become a popular method of modulating neural plasticity in humans. Clinically, rTMS is delivered at high intensities to modulate neuronal excitability. While the high-intensity magnetic field can be targeted to stimulate specific cortical regions, areas adjacent to the targeted area receive stimulation at a lower intensity and may contribute to the overall plasticity induced by rTMS. We have previously shown that low-intensity rTMS induces molecular and structural plasticity in vivo, but the effects on membrane properties and neural excitability have not been investigated. Here we investigated the acute effect of low-intensity repetitive magnetic stimulation (LI-rMS) on neuronal excitability and potential changes on the passive and active electrophysiological properties of layer 5 pyramidal neurons in vitro. Whole-cell current clamp recordings were made at baseline prior to subthreshold LI-rMS (600 pulses of iTBS, n=9 cells from 7 animals) or sham (n=10 cells from 9 animals), immediately after stimulation, as well as 10 and 20min post-stimulation. Our results show that LI-rMS does not alter passive membrane properties (resting membrane potential and input resistance) but hyperpolarises action potential threshold and increases evoked spike-firing frequency. Increases in spike firing frequency were present throughout the 20min post-stimulation whereas action potential (AP) threshold hyperpolarization was present immediately after stimulation and at 20min post-stimulation. These results provide evidence that LI-rMS alters neuronal excitability of excitatory neurons. We suggest that regions outside the targeted region of high-intensity rTMS are susceptible to neuromodulation and may contribute to rTMS-induced plasticity.


Journal of Neurocytology | 2002

Structural basis for the spotted appearance of amphibian neuromuscular junctions stained for synaptic vesicles.

Alan W. Everett; S.J. Edwards; S.J. Etherington

We have compared the distribution of vesicles in amphibian motor nerve terminals determined by electron microscopy and by functional labeling with the styryl dye, FM2-10. Our aim was to resolve apparent discrepancies in the literature on the distribution of vesicles determined by the two procedures. Electron photomicrographs of non-serial cross sections of terminal branches were analyzed by stereological procedures to obtain indices of the terminal and vesicle areas. Terminal cross sectional area varied 3-fold on average along terminal branches and was largest particularly when active zone was present in the section. The vesicle area index (a measure of vesicle abundance) was highly correlated with the terminal area index, suggesting that the average density of vesicles is constant throughout the branches. When the data were separated according to whether active zone was present or not in a section, we found a small (26%) but significant increase in the average density of vesicles in active zone compared with non-active zone regions in the terminal. The distribution of spots along terminal branches following vesicle staining with FM2-10, as well as with antibodies to vesicle proteins, suggested that vesicles were distributed in highly concentrated clusters. However, the degree of variation between spot and inter-spot staining intensities found with the FM-dye was similar in magnitude to that for terminal cross sectional area determined from the electron microscopy. We conclude that the spotty pattern of stained vesicles seen with the optical microscope results primarily from vesicle accumulations associated with terminal varicosities.


PeerJ | 2018

Repetitive low intensity magnetic field stimulation in a neuronal cell line: a metabolomics study

I.H.K. Hong; Andrew Garrett; Garth L. Maker; I. Mullaney; Jennifer Rodger; S.J. Etherington

Low intensity repetitive magnetic stimulation of neural tissue modulates neuronal excitability and has promising therapeutic potential in the treatment of neurological disorders. However, the underpinning cellular and biochemical mechanisms remain poorly understood. This study investigates the behavioural effects of low intensity repetitive magnetic stimulation (LI-rMS) at a cellular and biochemical level. We delivered LI-rMS (10 mT) at 1 Hz and 10 Hz to B50 rat neuroblastoma cells in vitro for 10 minutes and measured levels of selected metabolites immediately after stimulation. LI-rMS at both frequencies depleted selected tricarboxylic acid (TCA) cycle metabolites without affecting the main energy supplies. Furthermore, LI-rMS effects were frequency-specific with 1 Hz stimulation having stronger effects than 10 Hz. The observed depletion of metabolites suggested that higher spontaneous activity may have led to an increase in GABA release. Although the absence of organised neural circuits and other cellular contributors (e.g., excitatory neurons and glia) in the B50 cell line limits the degree to which our results can be extrapolated to the human brain, the changes we describe provide novel insights into how LI-rMS modulates neural tissue.


Chiropractic & Manual Therapies | 2017

Unravelling functional neurology: a scoping review of theories and clinical applications in a context of chiropractic manual therapy

Anne-Laure Meyer; Amanda J. Meyer; S.J. Etherington; Charlotte Leboeuf-Yde

BackgroundFunctional Neurology (FN), a seemingly attractive treatment approach used by some chiropractors, proposes to have an effect on a multitude of conditions but some of its concepts are controversial.Objectives and designA scoping review was performed to describe, in the context of chiropractic manual therapy, 1) the FN theories, and 2) its clinical applications (i.e. its indications, examination procedures, treatment modalities, treatment plans, and clinical outcomes) using four sources: i) one key textbook, ii) the scientific peer-reviewed literature, iii) websites from chiropractors using FN, and iv) semi-structured interviews of chiropractors using FN.MethodsThe scientific literature was searched in PubMed, PsycINFO, and SPORTDiscus, completed by a hand search in the journal Functional Neurology, Rehabilitation and Ergonomics (November 2016 and March 2017, respectively). The only textbook on the topic we found was included and articles were chosen if they had an element of manual therapy. There was no restriction for study design but discussion papers were excluded. Websites were found in Google using the search term “Functional Neurology”. Chiropractors, known to use FN, were invited based on their geographical location. Theories were mainly uncovered in the textbook as were all aspects of the clinical applications except treatment plans. The other three sources were used for the five aspects of clinical applications. Results were summarized and reported extensively in tables.ResultsEleven articles were included, five websites scrutinized, and four semi-structured interviews performed. FN is based on the belief that reversible lesions in the nervous system are the cause of a multitude of conditions and that specific clusters of neurons can be positively affected by manipulative therapy, but also by many other stimuli. Diagnostic procedures include both conventional and unusual tests, with an interpretation specific to FN. Initial treatment is intense and clinical outcomes reported as positive.ConclusionFN gives the impression to be a complex alternative to the old variant of the chiropractic subluxation model, in which the vertebral subluxation is replaced by “physiological lesions” of the brain, and the treatment, spinal adjustments, are complemented by various neurological stimuli. Both models purport to treat not the symptoms but the cause. We conclude there is a need for more scientific documentation on the validity of FN.


PLOS ONE | 2014

Modulation of Synaptic Vesicle Exocytosis in Muscle-Dependent Long-Term Depression at the Amphibian Neuromuscular Junction

S.J. Etherington; Victoria P.A. Johnstone; Alan W. Everett

We have labeled recycling synaptic vesicles at the somatic Bufo marinus neuromuscular junction with the styryl dye FM2-10 and provide direct evidence for refractoriness of exocytosis associated with a muscle activity-dependent form of long-term depression (LTD) at this synapse. FM2-10 dye unloading experiments demonstrated that the rate of vesicle exocytosis from the release ready pool (RRP) of vesicles was more than halved in the LTD (induced by 20 min of low frequency stimulation). Recovery from LTD, observed as a partial recovery of nerve-evoked muscle twitch amplitude, was accompanied by partial recovery of the refractoriness of RRP exocytosis. Unexpectedly, paired pulse plasticity, another routinely used indicator of presynaptic forms of synaptic plasticity, was unchanged in the LTD. We conclude that the LTD induces refractoriness of the neuromuscular vesicle release machinery downstream of presynaptic calcium entry.


Synapse | 2008

Role for the Skeletal Muscle Action Potential in Non-Hebbian Long-Term Depression at the Amphibian (Bufo Marinus) Neuromuscular Junction

S.J. Etherington; Alan W. Everett

Retrograde signaling from skeletal muscle cells to motor nerve terminals is a recognized mechanism for modulating the strength of neuromuscular transmission. We recently described a form of long‐term depression of transmitter release at the mature neuromuscular junction that is dependent on the production of nitric oxide, most likely by the muscle cell (Etherington and Everett 2004 J Physiol (Lond) 559:507–517). We now show that the depression is blocked by treating neuromuscular preparations with μ‐conotoxin G111A, an antagonist of skeletal muscle voltage gated sodium channels, indicating that the depression requires postsynaptic action potential firing. Experiments on dually‐innervated sartorius muscles revealed that propagation of action potentials generated by low‐frequency stimulation of one nerve branch gives rise to nitric‐oxide mediated depression at unstimulated nerve terminals located many millimetres away on the same muscle fiber. The non‐Hebbian pattern of expression of the depression, as well as its reliance on postsynaptic action potential firing, distinguish it from forms of synaptic depression described at immature neuromuscular synapses and may provide a mechanism for coregulation of the strength of motoneurons innervating the same postsynaptic cell. Synapse 62:291–301, 2008.


Scientific Reports | 2018

Resting-state fMRI study of brain activation using low-intensity repetitive transcranial magnetic stimulation in rats

Bhedita J. Seewoo; Kirk W. Feindel; S.J. Etherington; Jennifer Rodger

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique used to treat many neuropsychiatric conditions. However, the mechanisms underlying its mode of action are still unclear. This is the first rodent study using resting-state functional MRI (rs-fMRI) to examine low-intensity (LI) rTMS effects, in an effort to provide a direct means of comparison between rodent and human studies. Using anaesthetised Sprague-Dawley rats, rs-fMRI data were acquired before and after control or LI-rTMS at 1 Hz, 10 Hz, continuous theta burst stimulation (cTBS) or biomimetic high-frequency stimulation (BHFS). Independent component analysis revealed LI-rTMS-induced changes in the resting-state networks (RSN): (i) in the somatosensory cortex, the synchrony of resting activity decreased ipsilaterally following 10 Hz and bilaterally following 1 Hz stimulation and BHFS, and increased ipsilaterally following cTBS; (ii) the motor cortex showed bilateral changes following 1 Hz and 10 Hz stimulation, a contralateral decrease in synchrony following BHFS, and an ipsilateral increase following cTBS; and (iii) hippocampal synchrony decreased ipsilaterally following 10 Hz, and bilaterally following 1 Hz stimulation and BHFS. The present findings demonstrate that LI-rTMS modulates functional links within the rat RSN with frequency-specific outcomes, and the observed changes are similar to those described in humans following rTMS.


Frontiers in Neuroscience | 2018

Combined rTMS/fMRI Studies: An Overlooked Resource in Animal Models

Bhedita J. Seewoo; S.J. Etherington; Kirk W. Feindel; Jennifer Rodger

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique, which has brain network-level effects in healthy individuals and is also used to treat many neurological and psychiatric conditions in which brain connectivity is believed to be abnormal. Despite the fact that rTMS is being used in a clinical setting and animal studies are increasingly identifying potential cellular and molecular mechanisms, little is known about how these mechanisms relate to clinical changes. This knowledge gap is amplified by non-overlapping approaches used in preclinical and clinical rTMS studies: preclinical studies are mostly invasive, using cellular and molecular approaches, while clinical studies are non-invasive, including functional magnetic resonance imaging (fMRI), TMS electroencephalography (EEG), positron emission tomography (PET), and behavioral measures. A non-invasive method is therefore needed in rodents to link our understanding of cellular and molecular changes to functional connectivity changes that are clinically relevant. fMRI is the technique of choice for examining both short and long term functional connectivity changes in large-scale networks and is becoming increasingly popular in animal research because of its high translatability, but, to date, there have been no reports of animal rTMS studies using this technique. This review summarizes the main studies combining different rTMS protocols with fMRI in humans, in both healthy and patient populations, providing a foundation for the design of equivalent studies in animals. We discuss the challenges of combining these two methods in animals and highlight considerations important for acquiring clinically-relevant information from combined rTMS/fMRI studies in animals. We believe that combining rTMS and fMRI in animal models will generate new knowledge in the following ways: functional connectivity changes can be explored in greater detail through complementary invasive procedures, clarifying mechanism and improving the therapeutic application of rTMS, as well as improving interpretation of fMRI data. And, in a more general context, a robust comparative approach will refine the use of animal models of specific neuropsychiatric conditions.

Collaboration


Dive into the S.J. Etherington's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer Rodger

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Alan W. Everett

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Andrew Garrett

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen R. Williams

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge