S. J. Hale
University of Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. J. Hale.
Science | 2012
Joshua A. Carter; Eric Agol; W. J. Chaplin; Sarbani Basu; Timothy R. Bedding; Lars A. Buchhave; Jørgen Christensen-Dalsgaard; Katherine M. Deck; Y. Elsworth; Daniel C. Fabrycky; Eric B. Ford; Jonathan J. Fortney; S. J. Hale; R. Handberg; S. Hekker; Matthew J. Holman; Daniel Huber; Christopher Karoff; Steven D. Kawaler; Hans Kjeldsen; Jack J. Lissauer; Eric D. Lopez; Mikkel N. Lund; M. Lundkvist; T. S. Metcalfe; A. Miglio; Leslie A. Rogers; D. Stello; William J. Borucki; Steve Bryson
So Close and So Different In our solar system, the rocky planets have very distinct orbits from those of the gas giants. Carter et al. (p. 556, published online 21 June) report on a planetary system where this pattern does not apply, posing a challenge to theories of planet formation. Data from the Kepler space telescope reveal two planets with radically different densities orbiting the same star with very similar orbital periods. One planet has a rocky Earth-like composition and the other is akin to Neptune. The Kepler spacecraft detected a super-Earth and a Neptune-like planet in very tightly spaced orbits around the same star. In the solar system, the planets’ compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal and that planets’ orbits can change substantially after their formation. Here, we report another violation of the orbit-composition pattern: two planets orbiting the same star with orbital distances differing by only 10% and densities differing by a factor of 8. One planet is likely a rocky “super-Earth,” whereas the other is more akin to Neptune. These planets are 20 times more closely spaced and have a larger density contrast than any adjacent pair of planets in the solar system.
Science | 2011
W. J. Chaplin; Hans Kjeldsen; Jørgen Christensen-Dalsgaard; Sarbani Basu; A. Miglio; T. Appourchaux; Timothy R. Bedding; Y. Elsworth; R. A. García; R. L. Gilliland; Léo Girardi; G. Houdek; C. Karoff; S. D. Kawaler; T. S. Metcalfe; J. Molenda-Żakowicz; M. J. P. F. G. Monteiro; M. J. Thompson; G. A. Verner; J. Ballot; Alfio Bonanno; I. M. Brandão; Anne-Marie Broomhall; H. Bruntt; T. L. Campante; E. Corsaro; O. L. Creevey; G. Doğan; Lisa Esch; Ning Gai
Measurements of 500 Sun-like stars show that their properties differ from those predicted by stellar population models. In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar properties (such as mass, radius, and age) and to test theories of stellar evolution. We find that the distribution of observed masses of these stars shows intriguing differences to predictions from models of synthetic stellar populations in the Galaxy.
The Astrophysical Journal | 2010
Timothy R. Bedding; Daniel Huber; D. Stello; Y. Elsworth; S. Hekker; T. Kallinger; S. Mathur; Benoit Mosser; H. L. Preston; J. Ballot; C. Barban; Anne-Marie Broomhall; Derek L. Buzasi; W. J. Chaplin; R. A. García; M. Gruberbauer; S. J. Hale; J. De Ridder; Soren Frandsen; William J. Borucki; Timothy M. Brown; Jørgen Christensen-Dalsgaard; Ronald L. Gilliland; Jon M. Jenkins; Hans Kjeldsen; David G. Koch; K. Belkacem; Lars Bildsten; H. Bruntt; T. L. Campante
We have measured solar-like oscillations in red giants using time-series photometry from the first 34 days of science operations of the Kepler Mission. The light curves, obtained with 30 minute sampling, reveal clear oscillations in a large sample of G and K giants, extending in luminosity from the red clump down to the bottom of the giant branch. We confirm a strong correlation between the large separation of the oscillations (Δν) and the frequency of maximum power (νmax). We focus on a sample of 50 low-luminosity stars (νmax > 100 μHz, L <~ 30 L sun) having high signal-to-noise ratios and showing the unambiguous signature of solar-like oscillations. These are H-shell-burning stars, whose oscillations should be valuable for testing models of stellar evolution and for constraining the star formation rate in the local disk. We use a new technique to compare stars on a single echelle diagram by scaling their frequencies and find well-defined ridges corresponding to radial and non-radial oscillations, including clear evidence for modes with angular degree l = 3. Measuring the small separation between l = 0 and l = 2 allows us to plot the so-called C-D diagram of δν02 versus Δν. The small separation δν01 of l = 1 from the midpoint of adjacent l = 0 modes is negative, contrary to the Sun and solar-type stars. The ridge for l = 1 is notably broadened, which we attribute to mixed modes, confirming theoretical predictions for low-luminosity giants. Overall, the results demonstrate the tremendous potential of Kepler data for asteroseismology of red giants.
The Astrophysical Journal | 2011
S. Mathur; S. Hekker; Regner Trampedach; J. Ballot; T. Kallinger; Derek L. Buzasi; R. A. García; D. Huber; A. Jiménez; B. Mosser; Timothy R. Bedding; Y. Elsworth; C. Regulo; D. Stello; W. J. Chaplin; J. De Ridder; S. J. Hale; Karen Kinemuchi; Hans Kjeldsen; Fergal Mullally; Susan E. Thompson
The granulation pattern that we observe on the surface of the Sun is due to hot plasma rising to the photosphere where it cools down and descends back into the interior at the edges of granules. This is the visible manifestation of convection taking place in the outer part of the solar convection zone. Because red giants have deeper convection zones than the Sun, we cannot a priori assume that their granulation is a scaled version of solar granulation. Until now, neither observations nor one-dimensional analytical convection models could put constraints on granulation in red giants. With asteroseismology, this study can now be performed. We analyze ~1000 red giants that have been observed by Kepler during 13 months. We fit the power spectra with Harvey-like profiles to retrieve the characteristics of the granulation (timescale τgran and power P gran). We search for a correlation between these parameters and the global acoustic-mode parameter (the position of maximum power, νmax) as well as with stellar parameters (mass, radius, surface gravity (log g), and effective temperature (T eff)). We show that τeffν–0.89 max and P granν–1.90 max, which is consistent with the theoretical predictions. We find that the granulation timescales of stars that belong to the red clump have similar values while the timescales of stars in the red giant branch are spread in a wider range. Finally, we show that realistic three-dimensional simulations of the surface convection in stars, spanning the (T eff, log g) range of our sample of red giants, match the Kepler observations well in terms of trends.
Astronomy and Astrophysics | 2011
S. Hekker; Y. Elsworth; J. De Ridder; B. Mosser; R. A. García; T. Kallinger; S. Mathur; D. Huber; Derek L. Buzasi; H. L. Preston; S. J. Hale; J. Ballot; W. J. Chaplin; C. Regulo; Timothy R. Bedding; D. Stello; William J. Borucki; David G. Koch; J. M. Jenkins; Cheryl L. Allen; R. L. Gilliland; Hans Kjeldsen; J. Christensen-Dalsgaard
Context. The large number of stars for which uninterrupted high-precision photometric timeseries data are being collected with Kepler and CoRoT initiated the development of automated methods to analyse the stochastically excited oscillations in main-sequence, subgiant and red-giant stars. Aims. We investigate the differences in results for global oscillation parameters of G and K red-giant stars due to different methods and definitions. We also investigate uncertainties originating from the stochastic nature of the oscillations. Methods. For this investigation we use Kepler data obtained during the first four months of operation. These data have been analysed by different groups using already published methods and the results are compared. We also performed simulations to investigate the uncertainty on the resulting parameters due to different realizations of the stochastic signal. Results. We obtain results for the frequency of maximum oscillation power (νmax) and the mean large separation (� Δν� ) from different methods for over one thousand red-giant stars. The results for these parameters agree within a few percent and seem therefore robust to the different analysis methods and definitions used here. The uncertainties for νmax and � Δν� due to differences in realization noise are not negligible and should be taken into account when using these results for stellar modelling.
The Astrophysical Journal | 2011
W. J. Chaplin; Hans Kjeldsen; Timothy R. Bedding; Jørgen Christensen-Dalsgaard; R. L. Gilliland; S. D. Kawaler; T. Appourchaux; Y. Elsworth; R. A. García; G. Houdek; C. Karoff; T. S. Metcalfe; J. Molenda-Żakowicz; M. J. P. F. G. Monteiro; M. J. Thompson; G. A. Verner; Natalie M. Batalha; William J. Borucki; Timothy M. Brown; Steve Bryson; Jessie L. Christiansen; Bruce D. Clarke; J. M. Jenkins; Todd C. Klaus; David G. Koch; Deokkeun An; J. Ballot; Sarbani Basu; O. Benomar; Alfio Bonanno
Asteroseismology of solar-type stars has an important part to play in the exoplanet program of the NASA Kepler Mission. Precise and accurate inferences on the stellar properties that are made possible by the seismic data allow very tight constraints to be placed on the exoplanetary systems. Here, we outline how to make an estimate of the detectability of solar-like oscillations in any given Kepler target, using rough estimates of the temperature and radius, and the Kepler apparent magnitude.
The Astrophysical Journal | 2011
W. J. Chaplin; Timothy R. Bedding; Alfio Bonanno; Anne-Marie Broomhall; R. A. García; S. Hekker; D. Huber; G. A. Verner; Sarbani Basu; Y. Elsworth; G. Houdek; S. Mathur; B. Mosser; R. New; Ian R. Stevens; T. Appourchaux; C. Karoff; T. S. Metcalfe; J. Molenda-Żakowicz; M. J. P. F. G. Monteiro; M. J. Thompson; Jørgen Christensen-Dalsgaard; R. L. Gilliland; S. D. Kawaler; Hans Kjeldsen; J. Ballot; O. Benomar; E. Corsaro; T. L. Campante; P. Gaulme
We use photometric observations of solar-type stars, made by the NASA Kepler Mission, to conduct a statistical study of the impact of stellar surface activity on the detectability of solar-like oscillations. We find that the number of stars with detected oscillations falls significantly with increasing levels of activity. The results present strong evidence for the impact of magnetic activity on the properties of near-surface convection in the stars, which appears to inhibit the amplitudes of the stochastically excited, intrinsically damped solar-like oscillations.
The Astrophysical Journal | 2011
S. Mathur; R. Handberg; T. L. Campante; R. A. García; T. Appourchaux; Timothy R. Bedding; B. Mosser; W. J. Chaplin; J. Ballot; O. Benomar; Alfio Bonanno; E. Corsaro; P. Gaulme; S. Hekker; C. Regulo; D. Salabert; G. A. Verner; T. R. White; I. M. Brandão; O. L. Creevey; G. Doğan; Y. Elsworth; D. Huber; S. J. Hale; G. Houdek; C. Karoff; T. S. Metcalfe; Joanna Molenda-Zakowicz; M. J. P. F. G. Monteiro; M. J. Thompson
We analyze the photometric short-cadence data obtained with the Kepler mission during the first 8 months of observations of two solar-type stars of spectral types G and F: KIC 11395018 and KIC 11234888, respectively, the latter having a lower signal-to-noise ratio (S/N) compared with the former. We estimate global parameters of the acoustic (p) modes such as the average large and small frequency separations, the frequency of the maximum of the p-mode envelope, and the average line width of the acoustic modes. We were able to identify and to measure 22 p-mode frequencies for the first star and 16 for the second one even though the S/N of these stars are rather low. We also derive some information about the stellar rotation periods from the analyses of the low-frequency parts of the power spectral densities. A model-independent estimation of the mean density, mass, and radius is obtained using the scaling laws. We emphasize the importance of continued observations for the stars with low S/N for an improved characterization of the oscillation modes. Our results offer a preview of what will be possible for many stars with the long data sets obtained during the remainder of the mission.
Monthly Notices of the Royal Astronomical Society | 2014
G. R. Davies; W. J. Chaplin; Y. Elsworth; S. J. Hale
The Birmingham Solar Oscillations Network (BiSON) has provided high-quality high-cadence observations from as far back in time as 1978. These data must be calibrated from the raw observations into radial velocity and the quality of the calibration has a large impact on the signal-to-noise ratio of the final time series. The aim of this work is to maximise the potential science that can be performed with the BiSON data set by optimising the calibration procedure. To achieve better levels of signal-to-noise ratio we perform two key steps in the calibration process: we attempt a correction for terrestrial atmospheric differential extinction; and the resulting improvement in the calibration allows us to perform weighted averaging of contemporaneous data from different BiSON stations. The improvements listed produce significant improvement in the signal-to-noise ratio of the BiSON frequency-power spectrum across all frequency ranges. The reduction of noise in the power spectrum will allow future work to provide greater constraint on changes in the oscillation spectrum with solar activity. In addition, the analysis of the low-frequency region suggests we have achieved a noise level that may allow us to improve estimates of the upper limit of g-mode amplitudes.
Astronomy and Astrophysics | 2017
G. R. Davies; Mikkel N. Lund; A. Miglio; Y. Elsworth; James S. Kuszlewicz; Thomas S. H. North; Ben Rendle; W. J. Chaplin; Thaíse S. Rodrigues; T. L. Campante; Léo Girardi; S. J. Hale; Oliver J. Hall; Caitlin D. Jones; Steven D. Kawaler; Ian W. Roxburgh; Mathew Schofield
Recent results have suggested that there is tension between the Gaia DR1 TGAS distances and the distances obtained using luminosities determined by eclipsing binaries or asteroseismology on red giant stars. We use the K s -band luminosities of red clump stars, identified and characterized by asteroseismology, to make independent distance estimates. Our results suggest that Gaia TGAS distances contain a systematic error that decreases with increasing distance. We propose a correction to mitigate this offset as a function of parallax that is valid for the Kepler field and values of parallax that are less than ~1.6 mas. For parallaxes greater than this, we find agreement with previously published values. We note that the TGAS distances to the red clump stars of the open cluster M67 show a high level of disagreement that is difficult to correct for.