Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. J. Mills is active.

Publication


Featured researches published by S. J. Mills.


Mineralogical Magazine | 2012

Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides

S. J. Mills; Andrew G. Christy; J.-M. R. Génin; Tomohito Kameda; Fernando Colombo

Abstract Layered double hydroxide (LDH) compounds are characterized by structures in which layers with a brucite-like structure carry a net positive charge, usually due to the partial substitution of trivalent octahedrally coordinated cations for divalent cations, giving a general layer formula [(M1-x2+Mx3+)(OH)2]x+. This positive charge is balanced by anions which are intercalated between the layers. Intercalated molecular water typically provides hydrogen bonding between the brucite layers. In addition to synthetic compounds, some of which have significant industrial applications, more than 40 mineral species conform to this description. Hydrotalcite, Mg6Al2(OH)16[CO3]·4H2O, as the longest-known example, is the archetype of this supergroup of minerals. We review the history, chemistry, crystal structure, polytypic variation and status of all hydrotalcite-supergroup species reported to date. The dominant divalent cations, M2+, that have been reported in hydrotalcite supergroup minerals are Mg, Ca, Mn, Fe, Ni, Cu and Zn; the dominant trivalent cations, M3+, are Al, Mn, Fe, Co and Ni. The most common intercalated anions are (CO3)2-, (SO4)2- and Cl-; and OH-, S2- and [Sb(OH)6]- have also been reported. Some species contain intercalated cationic or neutral complexes such as [Na(H2O)6]+ or [MgSO4]0. We define eight groups within the supergroup on the basis of a combination of criteria. These are (1) the hydrotalcite group, with M2+:M3+ = 3:1 (layer spacing ~7.8 Å); (2) the quintinite group, with M2+:M3+ = 2:1 (layer spacing ~7.8 Å); (3) the fougèrite group, with M2+ = Fe2+, M3+ = Fe3+ in a range of ratios, and with O2- replacing OH- in the brucite module to maintain charge balance (layer spacing ~7.8 Å); (4) the woodwardite group, with variable M2+:M3+ and interlayer [SO4]2-, leading to an expanded layer spacing of ~8.9 Å; (5) the cualstibite group, with interlayer [Sb(OH)6]- and a layer spacing of ~9.7 Å; (6) the glaucocerinite group, with interlayer [SO4]2- as in the woodwardite group, and with additional interlayer H2O molecules that further expand the layer spacing to ~11 Å; (7) the wermlandite group, with a layer spacing of ~11 Å, in which cationic complexes occur with anions between the brucite-like layers; and (8) the hydrocalumite group, with M2+ = Ca2+ and M3+ = Al, which contains brucite-like layers in which the Ca:Al ratio is 2:1 and the large cation, Ca2+, is coordinated to a seventh ligand of ‘interlayer’ water. The principal mineral status changes are as follows. (1) The names manasseite, sjögrenite and barbertonite are discredited; these minerals are the 2H polytypes of hydrotalcite, pyroaurite and stichtite, respectively. Cyanophyllite is discredited as it is the 1M polytype of cualstibite. (2) The mineral formerly described as fougèrite has been found to be an intimate intergrowth of two phases with distinct Fe2+:Fe3+ ratios. The phase with Fe2+:Fe3+ = 2:1 retains the name fougèrite; that with Fe2+:Fe3+ = 1:2 is defined as the new species trébeurdenite. (3) The new minerals omsite (IMA2012-025), Ni2Fe3+(OH)6[Sb(OH)6], and mössbauerite (IMA2012-049), Fe63+O4(OH)8[CO3]·3H2O, which are both in the hydrotalcite supergroup are included in the discussion. (4) Jamborite, carrboydite, zincaluminite, motukoreaite, natroglaucocerinite, brugnatellite and muskoxite are identified as questionable species which need further investigation in order to verify their structure and composition. (5) The ranges of compositions currently ascribed to motukoreaite and muskoxite may each represent more than one species. The same applies to the approved species hydrowoodwardite and hydrocalumite. (6) Several unnamed minerals have been reported which are likely to represent additional species within the supergroup. This report has been approved by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association, voting proposal 12-B. We also propose a compact notation for identifying synthetic LDH phases, for use by chemists as a preferred alternative to the current widespread misuse of mineral names.


Mineralogical Magazine | 2013

New minerals and nomenclature modifications approved in 2012 and 2013

Pa Williams; Frédéric Hatert; Marco Pasero; S. J. Mills

The information given here is provided by the IMA Commission on New Minerals, Nomenclature and Classification for comparative purposes and as a service to mineralogists working on new species. Each mineral is described in the following format: Mineral name, if the authors agree on its release prior to the full description appearing in press Chemical formula Type locality Full authorship of proposal E-mail address of corresponding author Relationship to other minerals Crystal system, Space group; Structure determined, yes or no Unit-cell parameters Strongest lines in the X-ray powder diffraction pattern Type specimen repository and specimen number Citation details for the mineral prior to publication of full description Citation details concern the fact that this information will be published in the Mineralogical Magazine on a routine basis, as well as being added month by month to the Commissions web site. It is still a requirement for the authors to publish a full description of the new mineral. NO OTHER INFORMATION WILL BE RELEASED BY THE COMMISSION IMA No. 2012-039 Ca1–2Fe[(Si,Al,Be)5Be2O13(OH)2]·2H2O In a syenite pegmatite at Langangen, Blafjell, Norway (59°5′34″N 9°41′38″E) and the A/S Granite Quarry, Tvedalen, Vestfold, Norway J. Grice*, R. Kristiansen, H. Friis, R. Rowe, R.S. Selbekk, M. Cooper, A.O. Larsen and G. Poirier *E-mail: [email protected] Interrupted framework zeolite Monoclinic: P 21/ c ; structure determined a = 8.759(5), b = 4.864(2), c = 31.258(7) A, β = 90.31(3)° 15.555(100), 4.104(29), 3.938(36), 3.909(60), 3.820(30), 3.251(66), 3.186(27), 2.884(64) Type material is deposited in the collections of the Canadian Museum of Nature, Ottawa, Canada, specimen number CNMMC 86554, and the Natural History Museum, Oslo, Norway, specimen numbers 43434 and 43435 How to cite: Grice, J., Kristiansen, R., Friis, H., Rowe, R., Selbekk, R.S., Cooper, M., Larsen, A.O. and …


Mineralogical Magazine | 2012

Zincalstibite-9R: The first nine-layer polytype with the layered double hydroxide structure-type

S. J. Mills; Andrew G. Christy; A. R. Kampf; Robert M. Housley; Georges Favreau; Jean-Claude Boulliard; Vincent Bourgoin

Abstract Zincalstibite-9R, a new polytype in the hydrotalcite supergroup is reported from the Monte Avanza mine, Italy. It occurs as pale blue curved disc-like tablets flattened on {001} intergrown to form rosettes typically less than 50 μm in diameter, with cyanophyllite and linarite in cavities in baryte. Zincalstibite-9R is uniaxial (-), with refractive indices ω = 1.647(2) and ε = 1.626(2) measured in white light. The empirical formula (based on 12 OH groups) is (Zn1.092+Cu0.872+Al0.04)∑2.00Al1.01(Sb0.975+Si0.02)∑0.99(OH)12, and the ideal formula is (Zn,Cu)2Al(OH)6[Sb(OH)6]. Zincalstibite-9R crystallizes in space group R3, with a = 5.340(2), c = 88.01(2) Å, V = 2173.70(15) Å3 and Z = 9. The crystal structure was refined to R1 = 0.0931 for 370 unique reflections [Fo > 4σ(F)] and R1 = 0.0944 for all 381 unique reflections. It has the longest periodic layer stacking sequence for a layered double hydroxide compound reported to date.


Mineralogical Magazine | 2012

Omsite, (Ni,Cu)2Fe3+(OH)6[Sb(OH)6], a new member of the cualstibite group from Oms, France

S. J. Mills; Ar Kampf; Rm Housley; Georges Favreau; Marco Pasero; Cristian Biagioni; Stefano Merlino; C Berbain; Paolo Orlandi

Abstract Omsite (IMA 2012-025) is a new mineral from the Correc d’en Llinassos, Oms, Pyrénées-Orientales Department, France. It occurs as bright yellow to amber yellow discoidal tablets, flattened on {001}, which form rosettes typically 50-100 μm in diameter. Omsite generally crystallizes on siderite without associated supergene minerals; it occurs less commonly with glaukosphaerite. Crystals have a vitreous to resinous lustre, and are transparent to translucent. Omsite is not fluorescent in either short-wave or long-wave ultraviolet light. It has an estimated hardness of 3 on the Mohs’ scale, is brittle with an irregular fracture, and has one poor cleavage on {001}. The calculated density is 3.378 g cm-3. Crystals are uniaxial (-), with indices of refraction of ω = 1.728(3) and ε = 1.66(1), measured in white light. Pleochroism is ω = orange-yellow, ε = pale orange-yellow; ω > ε. The empirical formula [based on 12 (OH + Cl) p.f.u.] is (Ni1.0992+Cu0.6652+Mg0.107Fe0.0453+)∑1.916Fe1.0003+(Sb0.9475+As0.072Na0.029)∑1.048OH11.967Cl0.033. Omsite crystallizes in space group P3̅, with unit-cell parameters a = 5.3506(8), c = 19.5802(15) Å, V = 485.46(10) Å3 and Z = 2 determined by single crystal X-ray diffraction. The five strongest lines in the X-ray powder diffraction pattern [d in Å, (Irel), (hkl)] are as follows: 4.901, (100), (004); 4.575, (83), (011); 2.3539, (81), (114̅); 1.8079, (48), (118̅); 3.781, (34), (103). The crystal structure was solved to R1 = 0.0896 for 356 observed reflections [Fo>4σFo] and 0.1018 for all the 469 unique reflections. Omsite is a layered double hydroxide (LDH) mineral, with a topology consistent with members of the hydrotalcite supergroup and cualstibite group.


Mineralogical Magazine | 2014

The crystal structure of camerolaite and structural variation in the cyanotrichite family of merotypes

S. J. Mills; Andrew G. Christy; C. Schnyder; Georges Favreau; Jason R. Price

Abstract We present Raman data for camerolaite, cyanotrichite and carbonatecyanotrichite, and using synchrotron single-crystal X-ray diffraction have solved the structure of camerolaite from the Tistoulet Mine, Padern, Aude Department, France. Camerolaite crystallizes in space group P1 with the unit-cell parameters: a = 6.3310(13) Å , b = 2.9130(6) Å , c = 10.727(2) Å , α = 93.77(3)°, β = 96.34(3)°, γ =79.03(3)°, V = 192.82(7) Å3 and Z = ⅔ , with respect to the ideal formula from the refinement, Cu6Al3(OH)18(H2O)2[Sb(OH)6](SO4). The crystal structure was solved to R1 = 0.0890 for all 1875 observed reflections [Fo > 4σFo] and 0.0946 for all 2019 unique reflections. The P cell has been transformed into a C-centred cell that aids comparison with that of the structurally related khaidarkanite by aC = 2aP - bP, giving parameters a = 12.441(3), b = 2.9130(6), c = 10.727(2) Å , α = 93.77(3), β = 95.57(3), γ = 92.32(3)° and Z = ⅔ in C1. Edge-sharing octahedral ribbons Cu2Al(O,OH,H2O)8 form hydrogen-bonded layers ǁ (001), as in khaidarkanite. The partially occupied interlayer Sb and S sites of the average structure are in octahedral and tetrahedral coordination by oxygen, respectively. They cannot be occupied simultaneously, which leads to regular alternation of [Sb(OH)6]- and SO42- groups in rods ǁ y, resulting in local tripling of the periodicity along y for the Sb(OH)6-SO4 rods. Thus, camerolaite has a ‘host-guest’ structure in which an invariant host module (layers of Cu-Al ribbons) has embedded rod-like guest modules with a longer periodicity. Coupling between the phases of these rods is only short-range, resulting in diffuse X-ray scattering rather than sharp superstructure reflections. Similar disorder is known for parnauite, and is deduced for other members of the cyanotrichite group (cyanotrichite, carbonatecyanotrichite and khaidarkanite). Group members all share the Cu-Al ribbon module but have interlayer rods of different compositions and topologies; thus, they form a merotypic family. The low symmetry of the camerolaite average structure suggests other possibilities for structure variation in the group, which are discussed.


Mineralogical Magazine | 2013

Manganoblödite, Na2Mn(SO4)2·4H2O, and cobaltoblödite, Na2Co(SO4)2·4H2O: two new members of the blödite group from the Blue Lizard mine, San Juan County, Utah, USA

Anatoly V. Kasatkin; Fabrizio Nestola; Jakub Plášil; J. Marty; Dmitriy I. Belakovskiy; Atali A. Agakhanov; S. J. Mills; Danilo Pedron; Arianna Lanza; M. Favaro; S. Bianchin; Inna S. Lykova; Viktor Goliáš; William D. Birch

Abstract Two new minerals - manganoblödite (IMA2012-029), ideally Na2Mn(SO4)2·4H2O, and cobaltoblödite (IMA2012-059), ideally Na2Co(SO4)2·4H2O, the Mn-dominant and Co-dominant analogues of blödite, respectively, were found at the Blue Lizard mine, San Juan County, Utah, USA. They are closely associated with blödite (Mn-Co-Ni-bearing), chalcanthite, gypsum, sideronatrite, johannite, quartz and feldspar. Both new minerals occur as aggregates of anhedral grains up to 60 μm (manganoblödite) and 200 μm (cobaltoblödite) forming thin crusts covering areas up to 2 × 2 cm on the surface of other sulfates. Both new species often occur as intimate intergrowths with each other and also with Mn-Co-Ni-bearing blödite. Manganoblödite and cobaltoblödite are transparent, colourless in single grains and reddish-pink in aggregates and crusts, with a white streak and vitreous lustre. Their Mohs‘ hardness is ~2½. They are brittle, have uneven fracture and no obvious parting or cleavage. The measured and calculated densities are Dmeas = 2.25(2) g cm−3 and Dcalc = 2.338 g cm−3 for manganoblödite and Dmeas = 2.29(2) g cm−3 and Dcalc = 2.347 g cm−3 for cobaltoblödite. Optically both species are biaxial negative. The mean refractive indices are α = 1.493(2), β = 1.498(2) and γ = 1.501(2) for manganoblödite and α = 1.498(2), β = 1.503(2) and γ = 1.505(2) for cobaltoblödite. The chemical composition of manganoblödite (wt.%, electron-microprobe data) is: Na2O 16.94, MgO 3.29, MnO 8.80, CoO 2.96, NiO 1.34, SO3 45.39, H2O (calc.) 20.14, total 98.86. The empirical formula, calculated on the basis of 12 O a.p.f.u., is: Na1.96(Mn0.44Mg0.29Co0.14Ni0.06)Σ0.93S2.03O8·4H2O. The chemical composition of cobaltoblödite (wt.%, electron-microprobe data) is: Na2O 17.00, MgO 3.42, MnO 3.38, CoO 7.52, NiO 2.53, SO3 45.41, H2O (calc.) 20.20, total 99.46. The empirical formula, calculated on the basis of 12 O a.p.f.u., is: Na1.96(Co0.36Mg0.30Mn0.17Ni0.12)Σ 0.95S2.02O8·4H2O. Both minerals are monoclinic, space group P21/a, with a = 11.137(2), b = 8.279(1), c = 5.5381(9) Å, β = 100.42(1)°, V = 502.20(14) Å3 and Z = 2 (manganoblödite); and a = 11.147(1), b = 8.268(1), C = 5.5396(7) Å, β = 100.517(11)°, V = 501.97(10) Å3 and Z = 2 (cobaltoblödite). The strongest diffractions from X-ray powder pattern [listed as (d,Å(I)(hkl)] are for manganoblödite: 4.556(70)(210, 011); 4.266(45)(2̅01); 3.791(26)(2̅11); 3.338(21)(310); 3.291(100)(220, 021), 3.256(67)(211,1̅21), 2.968(22)(2̅21), 2.647(24)(4̅01); for cobaltoblödite: 4.551(80)(210, 011); 4.269(50)(2̅01); 3.795(18)(2̅11); 3.339(43)(310); 3.29(100)(220, 021), 3.258(58)(211, 1̅21), 2.644(21)( 4̅01), 2.296(22)( 1̅22). The crystal structures of both minerals were refined by single-crystal X-ray diffraction to R1 = 0.0459 (manganoblödite) and R1 = 0.0339 (cobaltoblödite).


Mineralogical Magazine | 2016

New minerals and nomenclature modifications approved in 2015 and 2016

Ulf Hålenius; Frédéric Hatert; M. Pasero; S. J. Mills

Ritsuro Miyawaki (Chairman, CNMNC)1, Frédéric Hatert (Vice-Chairman, CNMNC)2, Marco Pasero (Vice-Chairman, CNMNC)3* and Stuart J. Mills (Secretary, CNMNC)4 Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba 305-0005, Japan – [email protected]; Laboratoire de Minéralogie, Université de Liège, B-4000 Liège, Belgium – [email protected]; Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, I-56126 Pisa, Italy – [email protected]; and Geosciences, Museums Victoria, PO Box 666, Melbourne, Victoria 3001, Australia – [email protected]


Mineralogical Magazine | 2014

Bluebellite and mojaveite, two new minerals from the central Mojave Desert, California, USA

S. J. Mills; Anthony R. Kampf; Andrew G. Christy; Robert M. Housley; George R. Rossman; R E Reynolds; Joseph Marty

Abstract Bluebellite, Cu6[I5+O3(OH)3](OH)7Cl and mojaveite, Cu6[Te6+O4(OH)2](OH)7Cl, are new secondary copper minerals from the Mojave Desert. The type locality for bluebellite is the D shaft, Blue Bell claims, near Baker, San Bernardino County, California, while cotype localities for mojaveite are the E pit at Blue Bell claims and also the Bird Nest drift, Otto Mountain, also near Baker. The two minerals are very similar in their properties. Bluebellite is associated particularly with murdochite, but also with calcite, fluorite, hemimorphite and rarely dioptase in a highly siliceous hornfels. It forms bright bluishgreen plates or flakes up to ~20 μm × 20 μm × 5 μm in size that are usually curved. The streak is pale bluish green and the lustre is adamantine, but often appears dull because of surface roughness. It is non-fluorescent. Bluebellite is very soft (Mohs hardness ~1), sectile, has perfect cleavage on {001} and an irregular fracture. The calculated density based on the empirical formula is 4.746 g cm-3. Bluebellite is uniaxial (-), with mean refractive index estimated as 1.96 from the Gladstone-Dale relationship. It is pleochroic O (bluish green) >> E (nearly colourless). Electron microprobe analyses gave the empirical formula Cu5.82I0.99Al0.02Si0.12O3.11(OH)9.80Cl1.09 based on 14 (O+Cl) a.p.f.u. The Raman spectrum shows strong iodate-related bands at 680, 611 and 254 cm-1. Bluebellite is trigonal, space group R3, with the unit-cell parameters: a = 8.3017(5), c = 13.259(1) Å, V = 791.4(1) Å3 and Z = 3. The eight strongest lines in the powder X-ray diffraction (XRD) pattern are [dobs/Å (I) (hkl)]: 4.427(99)(003), 2.664(35)(211), 2.516(100)(212̅), 2.213(9)(006), 2.103(29)(033,214), 1.899(47)(312,215̅), 1.566(48)(140,217) and 1.479(29)(045,143̅,324). Mojaveite occurs at the Blue Bell claims in direct association with cerussite, chlorargyrite, chrysocolla, hemimorphite, kettnerite, perite, quartz and wulfenite, while at the Bird Nest drift, it is associated with andradite, chrysocolla, cerussite, burckhardtite, galena, goethite, khinite, mcalpineite, thorneite, timroseite, paratimroseite, quartz and wulfenite. It has also been found at the Aga mine, Otto Mountain, with cerussite, chrysocolla, khinite, perite and quartz. Mojaveite occurs as irregular aggregates of greenish-blue plates flattened on {001} and often curved, which rarely show a hexagonal outline, and also occurs as compact balls, from sky blue to medium greenish blue in colour. Aggregates and balls are up to 0.5 mm in size. The streak of mojaveite is pale greenish blue, while the lustre may be adamantine, pearly or dull, and it is non-fluorescent. The Mohs hardness is ~1. It is sectile, with perfect cleavage on {001} and an irregular fracture. The calculated density is 4.886 g cm-3, based on the empirical formulae and unit-cell dimensions. Mojaveite is uniaxial (–), with mean refractive index estimated as 1.95 from the Gladstone-Dale relationship. It is pleochroic O (greenish blue) >> E (light greenish blue). The empirical formula for mojaveite, based on 14 (O+Cl) a.p.f.u., is Cu5.92Te1.00Pb0.08Bi0.01O4(OH)8.94Cl1.06. The most intense Raman bands occur at 694, 654 (poorly resolved), 624, 611 and 254 cm-1. Mojaveite is trigonal, space group R3, with the unit-cell parameters: a = 8.316(2), c = 13.202(6) Å and V = 790.7(1) Å3. The eight strongest lines in the powder XRD pattern are [dobs/Å (I) (hkl)]: 4.403(91)(003), 2.672(28)(211), 2.512(100)(212̅), 2.110(27)(033,214), 1.889(34)(312,215̅,223̅), 1.570(39)(404,140,217), 1.481(34)(045,143̅,324) and 1.338(14)(422). Diffraction data could not be refined, but stoichiometries and unit-cell parameters imply that bluebellite and mojaveite are very similar in crystal structure. Structure models that satisfy bondvalence requirements are presented that are based on stackings of brucite-like Cu6MX14 layers, where M = (I or Te) and X = (O, OH and Cl). Bluebellite and mojaveite provide a rare instance of isotypy between an iodate containing I5+ with a stereoactive lone electron pair and a tellurate containing Te6+ with no lone pair.


Mineralogical Magazine | 2014

Canutite, NaMn3[AsO4][AsO3(OH)]2, a new protonated alluaudite-group mineral from the Torrecillas mine, Iquique Province, Chile

A. R. Kampf; S. J. Mills; Frédéric Hatert; Barbara P. Nash; M. Dini; A. A. Molina Donoso

Abstract The new mineral canutite (IMA2013-070), NaMn3[AsO4][AsO3(OH)]2, was found at two different locations at the Torrecillas mine, Salar Grande, Iquique Province, Chile, where it occurs as a secondary alteration phase in association with anhydrite, halite, lavendulan, magnesiokoritnigite, pyrite, quartz and scorodite. Canutite is reddish brown in colour. It forms as prisms elongated on [201̅] and exhibiting the forms {010}, {100}, {102}, {201} and {102̅}, or as tablets flattened on {102} and exhibiting the forms {102} and {110}. Crystals are transparent with a vitreous lustre. The mineral has a pale tan streak, Mohs hardness of 2½, brittle tenacity, splintery fracture and two perfect cleavages, on {010} and {101}. The calculated density is 4.112 g cm-3. Optically, canutite is biaxial (+) with α = 1.712(3), β = 1.725(3) and γ = 1.756(3) (measured in white light). The measured 2V is 65.6(4)º, the dispersion is r < v (slight), the optical orientation is Z = b; X ^ a = 18º in obtuse β and pleochroism is imperceptible. The mineral is slowly soluble in cold, dilute HCl. The empirical formula (for tabular crystals from near themineshaft ) , determined from electron - microprobe analyses , is (Na1.05Mn2.64Mg0.34Cu0.14Co0.03)∑4.20As3O12H1.62. Canutite is monoclinic, C2/c, a = 12.3282(4), b = 12.6039(5), c = 6.8814(5) Å, b = 113.480(8)º, V = 980.72(10) Å3 and Z = 4. The eight strongest X-ray powder diffraction lines are [dobs Å (I)(hkl)]: 6.33(34)(020), 4.12(26)(2̅21), 3.608(29)(310,1̅31), 3.296(57)(1̅12), 3.150(28)(002,131), 2.819(42)(400,041,330), 2.740(100)(240,4̅02,112) and 1.5364(31)(multiple). The structure, refined to R1 = 2.33% for 1089 Fo > 4σF reflections, shows canutite to be isostructural with protonated members of the alluaudite group.


Mineralogical Magazine | 2013

Chiral edge-shared octahedral chains in liskeardite, [(Al,Fe)32(AsO4)18(OH)42(H2O)22]·52H2O, an open framework mineral with a pharmacoalumite-related structure

Ian E. Grey; William G. Mumme; Colin M. MacRae; Tom T. Caradoc-Davies; Jason R. Price; M. S. Rumsey; S. J. Mills

Abstract The type specimen of liskeardite, (Al,Fe)3AsO4(OH)6·5H2O, from the Marke Valley Mine, Liskeard District, Cornwall, has been reinvestigated. The revised composition from electron microprobe analyses and structure refinement is [Al29.2Fe2.8(AsO4)18(OH)42(H2O)22]·52H2O. The crystal structure was determined using synchrotron data collected on a 2 μm diameter fibre at 100 K. Liskeardite has monoclinic symmetry, space group I2, with the unit-cell parameters a = 24.576(5), b = 7.754(2) Å, c = 24.641(5) Å, and β = 90.19(1)°. The structure was refined to R = 0.059 for 9769 reflections with I > 3σ(I). It is of an open framework type in which intersecting polyhedral slabs parallel to (101) and (101̅) form 17.4 Å × 17.4 Å channels along [010], with water molecules occupying the channels. Small amounts (<1 wt.%) of Na, K and Cu are probably adsorbed at the channel walls The framework comprises columns of pharmacoalumite-type, intergrown with chiral chains of six cis edge-shared octahedra. It can be described in terms of cubic close packing, with vacancies at both the anion and cation sites. The compositional and structural relationships between liskeardite and pharmacoalumite are discussed and a possible mechanism for liskeardite formation is presented

Collaboration


Dive into the S. J. Mills's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. R. Kampf

Natural History Museum of Los Angeles County

View shared research outputs
Top Co-Authors

Avatar

Ian E. Grey

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Ulf Hålenius

Swedish Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Andrew G. Christy

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Pa Williams

University of Western Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.-M. R. Génin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Colin M. MacRae

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge