Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. J. van Enk is active.

Publication


Featured researches published by S. J. van Enk.


quantum electronics and laser science conference | 2006

Measurement induced entanglement for excitation stored in remote atomic ensembles

H. de Riedmatten; C. W. Chou; D. Felinto; S. V. Polyakov; S. J. van Enk; H. J. Kimble

A critical requirement for diverse applications in quantum information science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory (for storing the states) can enable scalable architectures for quantum computation, communication and metrology. Here we report observations of entanglement between two atomic ensembles located in distinct, spatially separated set-ups. Quantum interference in the detection of a photon emitted by one of the samples projects the otherwise independent ensembles into an entangled state with one joint excitation stored remotely in 105 atoms at each site. After a programmable delay, we confirm entanglement by mapping the state of the atoms to optical fields and measuring mutual coherences and photon statistics for these fields. We thereby determine a quantitative lower bound for the entanglement of the joint state of the ensembles. Our observations represent significant progress in the ability to distribute and store entangled quantum states.


Journal of Modern Optics | 1994

Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields

S. J. van Enk; G. Nienhuis

Abstract We investigate the separation of the total angular momentum J of the electromagnetic field into a ‘spin’ part S and an ‘orbital’ part L. We show that both ‘spin’ and ‘orbital’ angular momentum are observables. However, the transversality of the radiation field affects the commutation relations for the associated quantum operators. This implies that neither S nor L are angular momentum operators. Moreover their eigenvalues are not discrete. We construct field modes such that each mode excitation (photon) is in a simultaneous eigenstate of S z and L z. We consider the interaction of such a photon with an atom and the resulting effect on the internal and external part of the atomic angular momentum.


Optics Communications | 1992

Eigenfunction description of laser beams and orbital angular momentum of light

S. J. van Enk; G. Nienhuis

Abstract The propagation of light beams through astigmatic lens systems is accompanied by a transfer of orbital angular momentum. We develop a method to describe propagating light beams by operators of which the field is an eigenfunction. This method is applied to determine when an astigmatic lens system transforms gaussian beams into other gaussian beams and where in the system angular momentum is transferred. We show that the Gouy phase is equal to the dynamical phase of a quantummechanical harmonic oscillator with time-dependent energy.


Physical Review A | 2002

Classical rules in quantum games

S. J. van Enk; R. Pike

We consider two aspects of quantum game theory: the extent to which the quantum solution solves the original classical game, and to what extent the new solution can be obtained in a classical model.


Science | 2009

Characterization of multipartite entanglement for one photon shared among four optical modes

Scott B. Papp; K. S. Choi; Hui Deng; Pavel Lougovski; S. J. van Enk; H. J. Kimble

Entanglement Sharing Quantum information processing relies on the ability to generate quantum states, to entangle them, and to send and receive those quantum states reliably across networks. With quantum two-level systems, or qubits, if you want to have a large system (and solve complex problems), there is a fear that the ancillary equipment required to control the system will increase rapidly, perhaps too quickly. The use of multipartite systems, where several quantum states can be accessed in a single component, has been proposed as a solution. Papp et al. (p. 764) work with a multipartite system consisting of a single photon shared between four optical modes and show that the degree of entanglement can be controllably tuned. The ability to work with, and control, such entangled multipartite systems should help the development of quantum information processing. Sharing a single photon between four optical modes creates entangled states that could be used in quantum information processing. Access to genuine multipartite entanglement of quantum states enables advances in quantum information science and also contributes to the understanding of strongly correlated quantum systems. We report the detection and characterization of heralded entanglement in a multipartite quantum state composed of four spatially distinct optical modes that share one photon, a so-called W state. By randomizing the relative phase between bipartite components of the W state, we observed the transitions from four- to three- to two-mode entanglement with increasing phase noise. These observations are possible for our system because our entanglement verification protocol makes use of quantum uncertainty relations to detect the entangled states that span the Hilbert space of interest.


Physical Review A | 1999

Quantum communication with dark photons

S. J. van Enk; H. J. Kimble; J. I. Cirac; P. Zoller

We show that quantum information may be transferred between atoms in different locations by using “phantom” or “dark” photons: the atoms are coupled through electromagnetic fields, but the corresponding field modes do not have to be fully populated. In the case where atoms are placed inside optical cavities, errors in quantum information processing due to photon absorption inside the cavity are diminished in this way. This effect persists up to intercavity distances of about a meter for the current levels of cavity losses, and may be useful for distributed quantum computing.


Physical Review A | 2005

Single-particle entanglement

S. J. van Enk

We study analytically the photoionization of a coherent superposition of atomic and molecular electronic states by an ultrashort, attosecond x-ray pulse. We show that the broad photoelectron spectrum contains detailed information about the time-dependent electron wave packet. The asymmetry of the photoelectron momentum distribution measures the momentum asymmetry of the initial bound-state wave packet. We show that molecular interference modulates the time-dependent photoelectron spectrum and asymmetry. The modulation also depends on the internuclear separation. The photoelectron spectrum and its asymmetry monitors coherent electron motion and in principle electron transfer on the attosecond time scale.We present an exact study of the finite-temperature properties of hard-core bosons (HCBs) confined on one-dimensional optical lattices. Our solution of the HCB problem is based on the Jordan-Wigner transformation and properties of Slater determinants. We analyze the effects of the temperature on the behavior of the one-particle correlations, the momentum distribution function, and the lowest natural orbitals. In addition, we compare results obtained using the grand-canonical and canonical descriptions for systems like the ones recently achieved experimentally. We show that even for such small systems, as small as 10 HCBs in 50 lattice sites, there are only minor differences between the energies and momentum distributions obtained within both ensembles.Fault-tolerant logical operations for qubits encoded by Calderbank-Shor-Steane codes are discussed, with emphasis on methods that apply to codes of high rate, encoding k qubits per block with k>1. It is shown that the logical qubits within a given block can be prepared by a single recovery operation in any state whose stabilizer generator separates into X and Z parts. Optimized methods to move logical qubits around and to achieve controlled-NOT and Toffoli gates are discussed. It is found that the number of time steps required to complete a fault-tolerant quantum computation is the same when k>1 as when k=1.Using numerical solutions to relativistic quantum field theory with space-time resolution, we illustrate how an incoming electron wave packet with a definite spin scatters off a supercritical potential step. We show that the production rate is reduced of only those electrons that have the same spin as the incoming electron is reduced. This spin-resolved result further clarifies the importance of the Pauli-exclusion principle for the Klein paradox.Theoretical investigations on single charge-transfer processes in collisions of F{sup 2+}+H{yields}F{sup +}+H{sup +} and its reverse process have been carried out at collision energies from 20 eV/u to 10 keV/u. The molecular orbital expansion method within the semiclassical impact parameter formalism has been employed for the scattering dynamics, while the ab initio multireference single- and double-excitation configuration interaction (MRD-CI) method was adopted for determination of molecular electronic states. The initial channels correspond to the quintet and triplet states for the corresponding collision processes, respectively. Four molecular states in the quintet manifold and eight molecular states in the triplet manifold were coupled. In the quintet manifold, the charge-transfer cross sections for F{sup 2+}+H{yields}F{sup +}+H{sup +} range from 1.3x10{sup -22} cm{sup 2} at 20 eV/u to 2.5x10{sup -15}cm{sup 2} at 10 keV/u. The cross sections of the reverse process, F{sup +}+H{sup +}{yields}F{sup 2+}+H, range from 3.0x10{sup -22} cm{sup 2}to 2.3x10{sup -15} cm{sup 2} in the same energy range. In the triplet states, the charge-transfer cross sections for F{sup 2+}+H{yields}F{sup +}+H{sup +} range from 1.1x10{sup -18} cm{sup 2} to 2.5x10{sup -16} cm{sup 2}, and its reverse process gives charge-transfer cross sections ranging from 1.7x10{sup -24} cm{sup 2} to 1.5x10{sup -17} cm{sup 2}.We optimize the turning on of a one-dimensional optical potential, V{sub L}(x,t)=S(t)V{sub 0} cos{sup 2}(kx) to obtain the optimal turn-on function S(t) so as to load a Bose-Einstein condensate into the ground state of the optical lattice of depth V{sub 0}. Specifically, we minimize interband excitations at the end of the turn-on of the optical potential at the final ramp time t{sub r}, where S(t{sub r})=1, given that S(0)=0. Detailed numerical calculations confirm that a simple unit cell model is an excellent approximation when the turn-on time t{sub r} is long compared with the inverse of the band excitation frequency and short in comparison with nonlinear time ({Dirac_h}/2{pi})/{mu} where {mu} is the chemical potential of the condensate. We demonstrate using the Gross-Pitaevskii equation with an optimal turn-on function S(t) that the ground state of the optical lattice can be loaded with no significant excitation even for times t{sub r} on the order of the inverse band excitation frequency.We have calculated the electronic stopping power and the energy-loss straggling parameter of swift He, Li, B, and N ions moving through several oxides, namely SiO{sub 2}, Al{sub 2}O{sub 3}, and ZrO{sub 2}. The evaluation of these stopping magnitudes was done in the framework of the dielectric formalism. The target properties are described by means of a combination of Mermin-type energy-loss functions that characterize the response of valence-band electrons, together with generalized oscillator strengths to take into account the ionization of inner-shell electrons. We have considered the different charge states that the projectile can have, as a result of electron capture and loss processes, during its motion through the target. The electron density for each charge state was described using the Brandt-Kitagawa statistical model and, for He and Li ions, also hydrogenic orbitals. This procedure provides a realistic representation of both the excitation properties of the target electrons and the projectile charge density, yielding stopping powers that compare reasonably well with available experimental data above a few tens of keV/amu.We analyze how a maximally entangled state of two qubits (e.g., the singlet {psi}{sub s}) is affected by the action of local channels described by completely positive maps E. We analyze the concurrence and the purity of states {rho}{sub E}=ExI[{psi}{sub s}]. Using the concurrence-versus-purity phase diagram we characterize local channels E by their action on the singlet state {psi}{sub s}. We specify a region of the concurrence-versus-purity diagram that is achievable from the singlet state via the action of unital channels. We show that even the most general (including nonunital) local channels acting just on a single qubit of the original singlet state cannot generate the maximally entangled mixed states. We study in detail various time evolutions of the original singlet state induced by local Markovian semigroups. We show that the decoherence process is represented in the concurrence-versus-purity diagram by a line that forms the lower bound of the achievable region for unital maps. On the other hand, the depolarization process is represented by a line that forms the upper bound of the region of maps induced by unital maps.Resonant formation of the muonic molecule dt{mu} in t{mu} atom collision with condensed H-D-T targets is considered. A specific resonance correlation function, which is a generalization of the Van Hove single-particle correlation function, is introduced to calculate the resonant-formation rate in such targets. This function is derived in the case of a polycrystalline harmonic solid. Also, a general asymptotic form of the resonance correlation function for high momentum transfers is found, which is valid for any solid or dense-fluid hydrogen-isotope target. Numerical calculations of the rates are performed for solid hydrogen isotopes at zero pressure, using the isotropic Debye model of a solid. It is shown that condensed-matter effects in resonant formation are strong, which explains some unexpected experimental results. In particular, the resonance profiles are affected by large zero-point vibrations of the hydrogen-isotope molecules bound in the considered crystals, even for high ({approx}1 eV) collision energies. This is important for explaining the time-of-flight measurements of the dt{mu}-formation rate, carried out at TRIUMF. The calculated mean values of the formation rate in solid D-T targets, for fixed target temperatures and steady-state conditions, are in good agreement with the PSI and RIKEN-RAL experiments.To find the criterion of a set of positive-definite matrices which can be written as reduced density matrices of a multipartite matrix is a hard and important problem. When the problem is concerned with multiparty density matrices, it is much more significant for computational many-body physics and many-body quantum entanglement which is one of the focuses of current quantum information theory. We give several results on the necessary compatibility relations between a set of two-party reduced density matrices and a global state in Hilbert space N{sub A}xN{sub B}xN{sub C} where N{sub A}, N{sub B}, and N{sub C} are arbitrary.Radiative lifetimes are measured for metastable levels in the iron charge states Fe{sup 9+},Fe{sup 10+}, and Fe{sup 13+}. The ions are generated in a 14 GHz electron cyclotron resonance ion source and trapped in a Kingdon ion trap. The Fe levels and their measured lifetimes are (a) 73.0{+-}0.8 ms for the 3s{sup 2}3p{sup 4}({sup 3}P)3d {sup 4}F{sub 7/2} level in Fe{sup 9+} (b) 9.91{+-}0.5 ms for the 3s{sup 2}3p{sup 4} {sup 1}D{sub 2} level in Fe{sup 10+}, and (c) 17.0{+-}0.2 ms for the 3s{sup 2}3p {sup 2}P{sup o}{sub 3/2} level in Fe{sup 13+}. Comparisons are made to other measured results using a Kingdon trap, an ion storage, and an electron-beam ion trap (EBIT)Quantum mechanics provides us with probability densities-wave functions modulus squared. Such a probability density is experimentally recovered as an average over many repeated measurements performed on a system in a given wave function. Sometimes it is important to be able to theoretically predict not just the average but also a possible outcome of a single measurement. It is very difficult to make exact predictions of this kind in the case of many-body systems due to correlations in the corresponding many-body wave functions. Here I propose an approximate way of simulating the outcomes of a single-experiment density measurement that is performed on variety of states of N bosons. The approximation is accurate if occupation of single-particle modes is macroscopic.Recently Barrett and Kok proposed an elegant method for entangling separated matter qubits. They outlined a strategy for using their entangling operation (EO) to build graph states, the resource for one-way quantum computing. Here I argue that their strategy considerably underrates the power and utility of their EO. By viewing their EO as a graph fusion event, one perceives that each successful event introduces an ideal redundant graph edge, which growth strategies should exploit. For example, if each EO succeeds with probability p > or approx. 0.4 then a highly connected graph can be formed with an overhead of only about ten EO attempts per graph edge. The Barrett and Kok (BK) scheme then becomes competitive with the more elaborate entanglement procedures designed to permit p to approach unity [Phys. Rev. Lett. 95, 030505 (2005)].Recent experimental data for fully differential cross sections have been compared to various continuum-distorted-wave eikonal-initial-state models without much success, despite good agreement with double-differential cross sections. A four-body model is formulated here and results are presented both when the internuclear potential is omitted and when it is included. They are compared with recent experimental data for fully differential cross sections for 3.6 MeV/u Au{sup Z{sub P}}{sup +}+He collisions, Z{sub P}=24,53.Relative cross sections for the 4 MeV H{sup +}+D{sub 2} ({sup 1}{sigma}{sub g}{sup +}){yields}H{sup +}+D{sub 2}{sup +}(1s{sigma})+e{sup -} ionization process were measured as a function of the molecular alignment during the interaction. The angle between the molecular axis and the projectile was obtained by using a momentum imagining technique and isolating the events in which the D{sub 2}{sup +}(1s{sigma}) ions are excited to the vibrational continuum and subsequently dissociate. While anisotropic cross sections have been observed in the past for a number of collision processes involving both target electrons, the one electron process investigated here is isotropic within our experimental uncertainties.We propose a method to probe Landau and Beliaev processes in dilute trapped atomic condensates with a multiple-state structure using electromagnetically induced transparency configurations. Under certain conditions, damping rates from these collisional processes are directly proportional to the dephasing rates, making it possible to determine damping rates through measurement of the dephasing. In the systems we consider, Landau decay rates are enhanced at low momenta, which allows one to distinguish between Landau-dominated and Beliaev-dominated regimes at the same temperature. Furthermore, the enhancement of Landau rates potentially provides a way to measure low temperatures (T<<T{sub c}) in dilute condensates more accurately than current methods permit.We report here the measurements of the complete valence shell binding energy spectra and the valenceorbital momentum profiles of butanone using the binary e,2e electron momentum spectroscopy. The impact energy was 1200 eV plus the binding energy and the symmetric noncoplanar kinematics was used. The experimental momentum profiles of the valence orbitals are compared with the theoretical momentum distributions calculated using Hartree-Fock and density functional theory methods with various basis sets. The experimental measurements are generally described by theoretical calculations except for summed 4a ,1 5a, 3a, and 14a orbital and summed 8a ,7 a, and 6a orbitals.We have performed calculations of two successive charge transfers from Rydberg states in a strong magnetic field. In the first charge transfer, a positron interacts with a highly excited atom to form positronium. In the second stage, the positronium interacts with an antiproton to give antihydrogen. For many parameters, our results are in qualitative agreement with previous calculations with no magnetic field. However, we do find that there are important changes which may affect the usefulness of the method for efficient formation of antihydrogen that can be trapped.We have investigated the dependence of two electron processes leading to dissociation on the orientation of the H{sub 2} molecule, by measuring differential cross sections for proton fragment emission in coincidence with the outgoing projectile charge state. Proton energy spectra (4-15 eV) emerging at angles 10 deg. and 90 deg. were obtained for He{sup +} and He{sup 0} charge states from He{sup 2+}+H{sub 2} collisions at E{sub P}=25 and 100 keV/amu (v{sub P}=1 and 2 a.u.). By means of the Franck-Condon approximation we found the contribution to the proton emission from the 2p{pi}{sub u}, 2s{sigma}{sub g}, 2p{sigma}{sub u}, and Coulomb explosion dissociation channels, allowing us to obtain cross sections for double capture, transfer ionization, and transfer excitation processes. Cross sections for double ionization and ionization plus excitation were also obtained from the measured data. The results were discussed on the basis of a two-step model within the independent electron approximation, using a perturbative approach for the single capture process.A general multistep linear state symmetrization device for photonic qubits is presented together with the experimental realizations of the 1→3 and 2→3 universal optimal quantum cloning machines and of a 3-qubit purification procedure. Since the present method exploits the bosonic nature of the photons, it can be applied to any particle obeying to the Bose statistics. On a technological perspective, the present protocol is expected to find relevant applications as a multiqubit symmetrization device to be used in modern quantum-information networks.Photodissociation of D{sub 2}{sup +} molecular ions in a beam from an ion source has been studied with 785 nm intense femtosecond laser pulses. Using a high-resolution velocity imaging technique, the neutral fragments from single vibrational levels of the D{sub 2}{sup +} molecules have been resolved. The effects of one- and net two-photon bond softening: level shifting, vibrational trapping, and molecular alignment are observed in the kinetic energy and angular distributions and are discussed in detail. In comparison with our previous study on H{sub 2}{sup +}, we observe smaller widths of the peaks in the kinetic energy distributions of the D{sub 2}{sup +} fragments from single vibrational levels. We attribute this to the longer lifetimes of D{sub 2}{sup +} vibrational states in the light-induced potentials. The width of the angular distributions increases for lowest fragment energies, which suggests vibrational trapping of the levels close to the three-photon crossing.Charge-transfer processes in collisions of H{sup +} ions with C{sub 2}H{sub 6} molecules are investigated theoretically below 10-keV collision energies within a molecular representation. Converged total as well as differential cross sections are obtained in this energy range within a discrete basis of electronic states computed by ab inito methods. The present collision system suggests that the combination of the Demkov-type and Landau-Zener-type mechanisms primarily governs the scattering dynamics for the flux exit from the initial channel. The present charge-transfer cross sections determined are found to agree very well with all available experimental data below a few keV, but begin to deviate above 3 keV, in which the present results slowly decrease, while measurements stay nearly constant. From the study of the electronic state calculation, we provide some information on fragmented species, which should help shed some light on the fragmentation mechanism and process of C{sub 2}H{sub 6}{sup +} ions produced after charge transfer. In addition, the vibrational effect of the initial target to charge transfer is examined.The s-wave elastic phase shifts and cross sections for the H-Li system are predicted using an ab initio and nonadiabatic quantal method at very low energies. The smooth and monotonic change of the phase shifts with added eigenstates indicates that the leptonic potential for the present system has no barrier as noticed in the case of the H-He system, or even a hump which is present in H-H interaction. The very high value of the s-wave elastic cross section at zero or near zero energy implies that Li will be a more efficient buffer gas in cooling the antiatom to ultralow temperatures. This study may stimulate new experiments in thermalizing H atom.We propose an easy implementable prepare-and-measure protocol for robust quantum key distribution with photon polarization. The protocol is fault tolerant against collective random unitary channel noise. The protocol does not need any collective quantum measurement or quantum memory. A security proof and a specific linear optical realization using spontaneous parametric down conversion are given.Here, I discuss the propagation of an ultrashort pulse through a collection of harmonic multilevel systems. In the limit of weak excitation and a large number of excited states, I show that the amplitude of the input driving pulse decays exponentially with propagation distance. The absorption coefficient associated with this decay is determined by the characteristic time of the manifold of excited states, instead of the polarization decay time as in the conventional absorption coefficient of a two-level atom. The input ultrashort pulse creates in the excited states a wave packet, which oscillates emitting secondary pulses in the process. Analytic solutions are obtained that describe the propagation of individual wave-packet re-emission pulses, and it is shown that their phase depends on the detuning of the input pulse.High-order harmonic generation (HHG) from a single hydrogen atom is studied analytically and numerically in the regime of small Keldysh parameter. The HHG spectra from different Coulomb-like model potentials, such as soft-core and/or one-dimensional (1D) potentials are compared to the three-dimensional (3D) Coulomb potential. It is shown, using analytic arguments, that the famous plateau in the HHG spectrum owes its existence to the Coulomb singularity, whereas soft-core potentials give spectra that fall off exponentially with increasing frequency. The idea is demonstrated numerically on a 3D soft-core potential that has the same long-range asymptotic behavior and ground-state energy as hydrogen. In addition, a number of widely used 1D Coulomb-like potentials are discussed. It is shown that in order that a 1D potential be a reasonable substitute for the 3D Coulomb potential, it must have a cusp singularity. A specific potential satisfying this criterion is proposed.Electron capture and loss cross sections have been measured for fast light projectile ions of 0.5 MeV H{sup 0,1+} and 0.5-2.0 MeV {sup 4}He{sup 0,1+,2+} in collisions with C{sub 60}. The gaseous target of C{sub 60} was prepared by heating C{sub 60} powder in a target cell to temperatures of 300-500 deg. C, and outgoing charge fractions were measured as a function of the cell temperature. Absolute cross sections are deduced by using two different vapor-pressure data available in literature. Experimental cross sections are examined in comparison with theoretical values obtained from various conventional formulas proposed for atomic targets. In addition, single- and double-electron capture cross sections are also calculated on the basis of a classical model by taking account of the local electron density of C{sub 60}. From a complete set of our experimental cross sections, equilibrium charge fractions are also deduced and found to be essentially the same as carbon-foil data, indicating no gas-solid difference.


Nature | 2010

Entanglement of spin waves among four quantum memories

K. S. Choi; Akihisa Goban; Scott B. Papp; S. J. van Enk; H. J. Kimble

Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a ‘web’ for connecting quantum processors for computation and communication, or as a ‘simulator’ allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems, entangled states have not been achieved for interconnects capable of ‘mapping’ multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations. Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium.


Physical Review A | 2001

Strongly focused light beams interacting with single atoms in free space

S. J. van Enk; H. J. Kimble

We construct three-dimensional solutions of Maxwell’s equations that describe Gaussian light beams focused by a strong lens. We investigate the interaction of such beams with single atoms in free space and the interplay between angular and quantum properties of the scattered radiation. We compare the exact results with those obtained with paraxial light beams and from a standard input-output formalism. We put our results in the context of quantum information processing with single atoms.


Physical Review A | 2004

Atoms, dipole waves, and strongly focused light beams

S. J. van Enk

We describe the resonant interaction of an atom with a strongly focused light beam by expanding the field in multipole waves. For a classical field, or when the field is described by a coherent state, we find that both intensity pattern and photon statistics of the scattered light are fully determined by a small set of parameters. One crucial parameter is the overlap of the field with the appropriate dipole wave corresponding to the relevant dipole transition in the atom. We calculate this overlap for a particular set of strongly focused longitudinally polarized light beams, whose spot size is only 0.1{lambda}{sup 2}, as discussed by S. Quabis et al. [Appl. Phys. B 72, 109 (2001)].

Collaboration


Dive into the S. J. van Enk's collaboration.

Top Co-Authors

Avatar

H. J. Kimble

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

P. Zoller

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher A. Fuchs

Perimeter Institute for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge