Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S.J. Young is active.

Publication


Featured researches published by S.J. Young.


Neuroscience | 1994

5-hydroxydopamine-labeled dopaminergic axns: Three-dimensional reconstructions of axons, synapses and postsynaptic targets in rat neostriatum

Philip M. Groves; Jean C. Linder; S.J. Young

Previous studies employing 5-hydroxydopamine to identify nigrostriatal dopaminergic axons and their synapses found that labeled axons made few synapses or that asymmetric contacts predominated. In contrast, recent studies using tyrosine hydroxylase or dopamine antibody techniques indicate that presumed dopaminergic axons form small symmetric contacts. We re-examined 5-hydroxydopamine-labeled material from the rat neostriatum using serial three-dimensional reconstruction techniques to characterize the morphology of labeled axons, synapses and postsynaptic targets. This ultrastructural analysis revealed a class of heavily labeled axons that are small (0.06-1.5 microns in diameter) and lack large varicosities. These axons form small (0.011-0.09 microns 2), en passant, symmetric synapses, mainly onto dendritic spines and spiny dendritic shafts and, in some cases, onto aspiny dendritic segments near branch points. The sites of these synapses along the axon appeared unrelated to the locations of axonal enlargements, suggesting that counting varicosities may not be an accurate indication of the extent of dopaminergic innervation in the neostriatum. The characteristics of these 5-hydroxydopamine-labeled elements correspond in all respects to axons and synapses identified as dopaminergic by immunohistochemistry in previous studies. In tissue in which all labeled and unlabeled synapses were classified, approximately 9% of all synapses were identified as dopaminergic by this type of label. Three-dimensional reconstructions provided additional insight concerning the interaction of dopaminergic afferents with postsynaptic striatal targets and their relation to other afferents to these neurons. They reveal that a short, unbranched dopaminergic axonal segment can make multiple synapses onto dendritic spines, shafts and branch points of one or more dendrites. In addition, one dendrite can receive contacts from several labeled axons. Dopamine synapses onto spines are always associated with unlabeled, asymmetric synapses onto the same spine. Synapses of various morphologies with a distinctly different, lighter form of labeling were much rarer, and may represent other aminergic afferents to the neostriatum. The presence of this second form of label in earlier 5-hydroxydopamine studies may have contributed to the long-standing controversy over the appearance of dopaminergic synapses examined by different techniques. Our results help to resolve this controversy and confirm that the nigrostriatal projection makes small symmetric synapses with a variety of striatal targets.


The Journal of Neuroscience | 1999

Modification of Postsynaptic Densities after Transient Cerebral Ischemia: A Quantitative and Three-Dimensional Ultrastructural Study

Maryann E. Martone; Ying Jones; S.J. Young; Mark H. Ellisman; Justin A. Zivin; Bingren Hu

Abnormal synaptic transmission has been hypothesized to be a cause of neuronal death resulting from transient ischemia, although the mechanisms are not fully understood. Here, we present evidence that synapses are markedly modified in the hippocampus after transient cerebral ischemia. Using both conventional and high-voltage electron microscopy, we performed two- and three-dimensional analyses of synapses selectively stained with ethanolic phosphotungstic acid in the hippocampus of rats subjected to 15 min of ischemia followed by various periods of reperfusion. Postsynaptic densities (PSDs) from both area CA1 and the dentate gyrus were thicker and fluffier in postischemic hippocampus than in controls. Three-dimensional reconstructions of selectively stained PSDs created using electron tomography indicated that postsynaptic densities became more irregular and loosely configured in postischemic brains compared with those in controls. A quantitative study based on thin sections of the time course of PSD modification indicated that the increase in thickness was both greater and more long-lived in area CA1 than in dentate gyrus. Whereas the magnitude of morphological change in dentate gyrus peaked at 4 hr of reperfusion (140% of control values) and declined thereafter, changes in area CA1 persisted and increased at 24 hr of reperfusion (191% of control values). We hypothesize that the degenerative ultrastructural alteration of PSDs may produce a toxic signal such as a greater calcium influx, which is integrated from the thousands of excitatory synapses onto dendrites, and is propagated to the neuronal somata where it causes or contributes to neuronal damage during the postischemic phase.


Proceedings 9th Heterogeneous Computing Workshop (HCW 2000) (Cat. No.PR00556) | 2000

Combining workstations and supercomputers to support grid applications: the parallel tomography experience

Shava Smallen; W. Crine; Jeffrey A. Frey; Fran Berman; Richard Wolski; Mei-Hui Su; Carl Kesselman; S.J. Young; Mark H. Ellisman

Computational grids are becoming an increasingly important and powerful platform for the execution of large-scale, resource-intensive applications. However, it remains a challenge for applications to tap into the potential of grid resources in order to achieve performance. In this paper, we illustrate how work queue applications can leverage grids to achieve performance through coallocation. We describe our experiences in developing a scheduling strategy for a production tomography application targeted at grids that contain both workstations and parallel supercomputers. Our strategy uses dynamic information exported by a supercomputers batch scheduler to simultaneously schedule tasks on workstations and immediately-available supercomputer nodes. This strategy is of great practical interest because it combines resources that are available in a typical research laboratory: time-shared workstations and CPU time in remote space-shared supercomputers. We show that this strategy improves the performance of the tomography application compared to traditional scheduling strategies, which target the application to either type of resource alone.


Neuroscience | 2000

Striatal cells containing aromatic l-amino acid decarboxylase: an immunohistochemical comparison with other classes of striatal neurons

A Mura; Jean C. Linder; S.J. Young; Philip M. Groves

In a previous study, we described a population of striatal cells in the rat brain containing aromatic L-amino acid decarboxylase, the enzyme involved in the conversion of L-DOPA into dopamine. We have also presented evidence that these cells produce dopamine in the presence of exogenous L-DOPA. In this paper, we further characterize these striatal aromatic L-amino acid decarboxylase-containing cells in order to determine whether they form a subclass of one of the known categories of striatal neurons or if they represent a novel cell type. Using immunohistochemical methods, we compared the morphology and distribution of the aromatic L-amino acid decarboxylase-immunolabeled cells with those of other classes of striatal neurons. Our results show that both the morphology and distribution of aromatic L-amino acid decarboxylase-immunolabeled cells are very distinctive and do not resemble those of cells labeled for other striatal neuronal markers. Double-labeling procedures revealed that aromatic L-amino acid decarboxylase cells do not co-localize somatostatin or parvalbumin, and only a very small percentage of them co-localize calretinin. However, the population of aromatic L-amino acid decarboxylase cells label intensely for GABA.Overall, our results suggest that these aromatic L-amino acid decarboxylase-containing cells represent a class of striatal GABAergic neurons not described previously.


Neuroscience Letters | 1998

Altered long-term potentiation in the hippocampus of apolipoprotein E-deficient mice

Isaac Veinbergs; Min W Jung; S.J. Young; Emily Van Uden; Philip M. Groves; Eliezer Masliah

Recent studies suggest that apolipoprotein E (apoE) plays a neurotrophic role in the central nervous system and that an aberrant function of this molecule might result in neurodegeneration. Supporting this notion, apoE-deficient mice show neurodegenerative and cognitive alterations. To characterize physiological changes associated with synaptic damage and cognitive impairment in apoE-deficient mice, we investigated synaptic plasticity in the hippocampus of urethane anesthetized mice. Electrical stimulation was delivered to the perforant pathway and the resulting evoked field excitatory postsynaptic potential (EPSP) and population spike were recorded in the hilus. Long-term potentiation, as measured in the population spike, was reduced by 50% in apoE-deficient mice when compared to wild-type controls. In contrast, there were no significant differences in the evoked field EPSP between wild-type and apoE-deficient mice following high-frequency stimulation. These results support the notion that cognitive impairment and synaptic loss in the hippocampus of apoE-deficient mice might be associated with impaired long-term potentiation.


Neuroscience Letters | 1982

Noradrenergic terminal excitability: Effects of opioids

S. Nakamura; James M. Tepper; S.J. Young; Nicholas Ling; Philip M. Groves

The local infusion of morphine or D-Ala2, Met5-enkephalinamide into the frontal cortical terminal fields of noradrenergic neurons of the nucleus locus coeruleus resulted in a decrease in the excitability of the axon terminal regions to direct electrical stimulation. These effects were concentration dependent and could be blocked or partially reversed by the local infusion of naloxone. Some evidence was obtained for a differential antagonizing effect of naloxone upon the effects of morphine and D-Ala2, Met5-enkephalinamide. These results are discussed with respect to an effect of opioids on the polarization and/or ionic conductance of the terminal fields of locus coeruleus neurons, and to the possible regulation of neurotransmitter release by presynaptic opiate receptors.


Brain Research Bulletin | 1989

Mesocortical dopaminergic neurons. 1. Electrophysiological properties and evidence for soma-dendritic autoreceptors

R.F. Gariano; James M. Tepper; S.F. Sawyer; S.J. Young; Philip M. Groves

Mesencephalic dopaminergic neurons were electrophysiologically identified by a variety of criteria, including antidromic activation from prefrontal or cingulate cortex, neostriatum, or nucleus accumbens in urethane-anesthetized rats. The mean firing rate of 98 mesocortical dopaminergic neurons was 2.9 +/- 0.3 spikes/sec and did not differ from the mean firing rate found for nigrostriatal or nucleus accumbens dopaminergic neurons. Spontaneously active mesocortical dopaminergic neurons were inhibited by intravenous administration of either apomorphine (6 micrograms/kg) or amphetamine (0.25 mg/kg). Whereas most antidromic responses of nigrostriatal and mesoaccumbens neurons consisted of the initial segment spike only, cortically-elicited antidromic responses typically consisted of a full initial segment-soma-dendritic spike. These findings are discussed with regard to the presence of soma-dendritic autoreceptors on mesocortical dopaminergic neurons.


Experimental Brain Research | 1986

Substantia nigra stimulation evoked antidromic responses in rat neostriatum

Lawrence J. Ryan; S.J. Young; Philip M. Groves

SummaryElectrical stimulation of the substantia nigra of rats elicits a burst of small amplitude waves with a latency of 4–6 ms that may last for 10–15 ms throughout much of the neostriatum. Frontal cortex stimulation also elicits a burst response, which can occlude the substantia nigra response. The substantia nigra evoked burst response was still present after chronic neocortical ablation or thalamic transection or both treatments combined. The response corresponds to the first sharp negative wave of the substantia nigra evoked neostriatal field potential. Single substantia nigra evoked action potentials were recorded in neostriatum with a mean latency of 9.8 ms, ranging from 4–22 ms. These action potentials were considered to be antidromic because 1) they were occluded during appropriate collision intervals by orthodromic action potentials elicited by frontal cortex stimulation. Subthreshold frontal cortex conditioning stimulation did not alter the threshold for activation from substantia nigra. The refractory period for the axon was at least as long as that for the soma and ranged between 0.8–2.0 ms. The antidromic responses failed to follow low frequency stimulation (< 40 Hz for 3000 ms). This failure occurred in the axon between substantia nigra and globus pallidus. The burst response and first sharp negative wave of the field potential probably represent the antidromic activation of the ubiquitous and densely packed medium spiny neostriatal projection neurons. These responses 1) occur at the same latency, 2) respond in the same manner to twin pulse and repetitive stimulation and 3) are occluded by frontal cortex stimulation in the same manner as antidromic action potentials.


Brain Research Bulletin | 1989

Mesocortical dopaminergic neurons. 2. Electrophysiological consequences of terminal autoreceptor activation.

R.F. Gariano; S.F. Sawyer; James M. Tepper; S.J. Young; Philip M. Groves

Measurement of drug- and stimulation-induced changes in the electrical excitability of dopaminergic terminals was employed to assess the effects of stimulation of dopamine terminal autoreceptors in the prefrontal cortex in urethane-anesthetized rats. Systemic or local administration of amphetamine decreased, whereas systemic administration of haloperidol increased the excitability of prefrontal cortical dopaminergic terminals of ventral tegmental area dopaminergic neurons. Mesoprefrontal dopaminergic terminal excitability was also responsive to spontaneous and stimulation-induced alterations in the rate of impulses reaching the terminal fields. These results are comparable to those previously reported for nigrostriatal and mesoaccumbens dopaminergic neurons, and are discussed with regard to the operational characteristics of autoinhibition in the mesocortical dopaminergic system.


Neuroscience | 1996

Glutamate-dependent long-term presynaptic changes in corticostriatal excitability

M. Garcia-Munoz; Patricia Patino; Eliezer Masliah; S.J. Young; Philip M. Groves

We have previously shown that brief high frequency stimulation of the anteromedial prefrontal cortex induces a long-term decrease in excitability of the glutamatergic corticostriatal terminal field. In contrast, a long-term increase in presynaptic corticostriatal excitability may be induced by presenting two brief cortical tetanizing stimuli separated by 2-3 min such that the second tetanus coincides with a period of increased excitability elicited by the first. In the present study, we examined the glutamate receptor subtypes involved in these long-term changes in presynaptic excitability. A specific glutamate receptor antagonist was infused into the rat striatum 10-25 min prior to either a single or double cortical tetanic stimulation. To eliminate the participation of intrinsic striatal cells, a subset of animals received a striatal kainic acid lesion eight to 20 days before the recording experiment. Antagonists of the N-methyl-D-aspartate and metabotropic glutamate receptor subtypes were effective in blocking the decrease in excitability induced by single cortical tetanic stimulation whereas an antagonist of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid/kainate receptor did not prevent the induction of a long-term reduction in excitability. In contrast, each of these antagonists prevented the induction of a long-term increase in excitability. These long-term modifications in excitability of the presynaptic glutamate axon terminals appear to be induced by similar mechanisms to those postulated to operate in long-term potentiation and depression. These enduring changes in presynaptic excitability are likely to represent important mechanisms for the selective modification of information processing in the striatum.

Collaboration


Dive into the S.J. Young's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S.F. Sawyer

Wake Forest University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G.Y. Fan

University of California

View shared research outputs
Top Co-Authors

Avatar

Jean C. Linder

University of California

View shared research outputs
Top Co-Authors

Avatar

M. Diana

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge