Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. K. Asha is active.

Publication


Featured researches published by S. K. Asha.


Journal of Physical Chemistry B | 2010

n-Type Field Effect Transistors Based on Rigid Rod and Liquid Crystalline Alternating Copoly(benzobisoxazole) Imides Containing Perylene and/or Naphthalene

Nagesh B. Kolhe; S. K. Asha; Satyaprasad P. Senanayak; K. S. Narayan

The synthesis, characterization, and device studies of poly(benzobisoxazole imide)s containing perylene or naphthalene units in an alternating fashion with the oxazole unit are described. Photoinduced energy transfer and charge separation were studied in methanesulfonic acid (MSA) solution via absorption, excitation, and steady-state fluorescence studies. Excitation of the bisoxazole moiety resulted in enhanced emission from the perylene bisimide unit as a result of FRET (Förster resonance energy transfer). The influence of the imide substitution into the linear chain of poly(benzobisoxazole) (PBO) on its solid-state packing was examined by wide-angle X-ray diffraction (WXRD) analysis. Bottom contact field effect transistors (FET) based on thermally annealed polymer films were fabricated and studied. The polymers showed n-type charge transport and current modulation with an on/off ratio greater than 10(2). It was observed that the FETs consisting of the random copolymer of bisoxazole containing both perylene as well as naphthalene bisimide units had higher performance parameters such as better mobility (μ(e)) and I(on)/I(off) ratio compared to those of the pristine systems.


Journal of Materials Chemistry | 2012

Structure engineering of naphthalene diimides for improved charge carrier mobility: self-assembly by hydrogen bonding, good or bad?

Nagesh B. Kolhe; R. Nandini Devi; Satyaprasad P. Senanayak; B. Jancy; K. S. Narayan; S. K. Asha

Two families of naphthalene diimide (NDI) derivatives were compared and contrasted for the effect of self-assembly on charge carrier transport. One series of NDI derivatives had a terminal phenyl ring attached to a hexyl spacer substituted naphthalene core either through an ester or an amide linkage (NDI-E and NDI-A, respectively), while the other series had a 3,4,5-tridodecyloxy phenyl unit (NDI-E3, NDI-A3) instead of the terminal phenyl unit. Solution processed thin films of these molecules exhibited n-type charge transport characteristics in a bottom gate top contact organic field effect transistor (OFET) geometry. The amide derivatives showed evidence of self-organization with observation of red shifted aggregate emission in solution as well as solid state. Variable temperature FTIR studies in the solid state confirmed the existence of strong hydrogen bonding which could be broken only at very high temperature. However, contrary to expectations, the NDI ester derivatives showed better device efficiency with electron mobilities in the range 8.5 × 10−3 to 2 × 10−2 cm2 V−1 s−1 and on/off ratio ∼104. The thin film crystallinity and morphology of NDI-E and NDI-A were examined through X-ray diffraction and atomic force microscopy (AFM). The correlation of crystallinity, hydrogen bonding and charge carrier mobility was studied using energy minimized structures from density functional theory (DFT). The higher electron mobility of ester linked NDI derivatives over the amide linked ones was attributed to the freedom in charge transport pathways offered by a three dimensional crystalline organization in the ester compared to the restricted directional hydrogen bonding interaction in the amide derivatives.


Journal of Physical Chemistry B | 2014

Photoresponsive smectic liquid crystalline multipods and hyperbranched azo polymers.

Chinmay G. Nardele; S. K. Asha

Liquid crystalline azobenzene containing triped and tetraped monomers were designed and synthesized and further used as B3 and B4 type monomers to form hyperbranched polymers with tetraethylene glycol as the A2 type comonomer. The mesophase characteristics of the multiarm-star mesogens and hyperbranched polymers were analyzed using various instrumentation techniques like differential scanning calorimetry (DSC), polarized light microscopy (PLM) and variable temperature XRD. The multipod monomers as well as hyperbranched polymers exhibited thermotropic smectic liquid crystalline characteristics with a tendency toward higher ordered smectic LC phases with increased branching. The hyperbranched polymers exhibited lamellar organization even in the as-solvent precipitated powder sample indicating higher extent of nanosegregation. Their potential application as fast switching photochromic materials was highlighted by carrying out isothermal photoswitching experiments in the LC state. Reversible isothermal smectic-isotropic phase transition could be achieved by UV irradiation in <1 s in the multipod monomers, while it required >2 s UV irradiation in the case of the hyperbranched polymers.


Journal of Physical Chemistry B | 2014

Blue, Green, and Orange-Red Emission from Polystyrene Microbeads for Solid-State White-Light and Multicolor Emission

Swapnil L. Sonawane; S. K. Asha

Solid-state white-light emission was achieved from polystyrene (PS) microbeads incorporated with fluorophores based on perylene bisimide (PBITEG) and oligo(p-phenylenevinylene) (OPV) as acrylic cross-linkers. The PS beads incorporated with only PBITEG gave intense orange-red emission; PS incorporated with OPV exhibited blue-emission, whereas a series of polymers incorporating both cross-linkers exhibited varying shades of white-light emission. One of the PS samples, PS-PBITEG-6.25-OPV-4.28 (PBITEG incorporation: 6.25 × 10(-7) mole; OPV incorporation: 4.28 × 10(-7) mol), exhibited pure white-light emission in the powder form with CIE coordinates (0.33, 0.32). The rigid aromatic cross-linkers were incorporated into the PS backbone in a two-stage dispersion polymerization to afford PS beads in the size range 2 to 3 μm. The incorporation of fluorophores as cross-linkers enabled covalent attachment of the dye to the polymer backbone, avoiding dye leakage besides avoiding aggregation-induced fluorescence quenching.


ACS Applied Materials & Interfaces | 2013

Fluorescent Cross-Linked Polystyrene Perylenebisimide/Oligo(p-Phenylenevinylene) Microbeads with Controlled Particle Size, Tunable Colors, and High Solid State Emission

Swapnil L. Sonawane; S. K. Asha

A series fo cross-linked fluorescent polystyrene (PS) microbeads with narrow size distribution and intense solid state emission was developed. Fluorophores based on perylene bisimide (PBI) and oligo(p-phenylenevinylene) (OPV) designed as acrylic cross-linkers were introduced into the polymerization recipe in a two-stage dispersion polymerization, carried out in ethanol in the presence of poly(vinylpyrrolidone) (PVP) as stabilizer. The structural design permitted introduction of up to 10(-5) moles of the fluorophores into the polymerization medium without fouling of the dispersion. The particle size measured using dynamic light scattering (DLS) indicated that they were nearly monodisperse with size in the range 2-3 μm depending on the amount of fluorophore incorporated. Fluorescence microscope images of ethanol dispersion of the sample exhibited intense orange red emission for PS-PBI-X series and green emission for PS-OPV-X series. A PS incorporated with both OPVX and PBIX exhibited dual emission upon exciting at the OPV wavelength of 350 nm and PBI wavelength of 490 nm, respectively. The low incorporation of fluorophore resulted in almost complete absence of aggregation induced reduction in fluorescence as well as red-shifted aggregate emission. The solid state emission quantum yield measured using integrating-sphere setup indicated a very high quantum yield of ϕpowder = 0.71 for PS-OPV-X and ϕpowder = 0.25 for PS-PBI-X series. The cross-linked PS microbeads incorporating both OPV and PBI chromophores had a ϕpowder = 0.33 for PBI emission and ϕpowder = 0.20 for OPV emission. This strategy of introducing fluorophore as cross-linkers into the PS backbone is very versatile and amenable to simultaneous addition of different suitably designed fluorophores emitting at different wavelengths.


Journal of Materials Chemistry C | 2014

Supramolecular P4VP-pentadecylphenol naphthalenebisimide comb-polymer: mesoscopic organization and charge transport properties

Rekha Narayan; Prashant Kumar; K. S. Narayan; S. K. Asha

A supramolecular comb polymer of pentadecyl phenol (PDP) substituted naphthalenebisimide (PDP-UNBI) with poly(4-vinylpyridine) (P4VP) is reported. The mesoscopic organization within the P4VP(PDP-UNBI)n complexes was studied using wide-angle X-ray diffraction (WXRD) techniques. The packing diagram obtained from the single-crystal XRD analysis of the PDP-UNBI crystals gave a clear picture of the initial arrangement present in self-associated PDP-UNBI alone. Correlating this with the XRD data of the hydrogen-bonded polymer complex provided insight into the probable packing of the P4VP chains within the crystalline lattice of PDP-UNBI leading to a highly ordered lamellar packing. Transmission electron microscopy (TEM) revealed the uniform mesomorphic lamellar structures in the domain range of ∼5–10 nm. Furthermore, the charge carrier mobility measurements observed from space-charge-limited current (SCLC) measurements demonstrated that transport behaviour of the hydrogen-bonded P4VP(PDP-UNBI) complex (2 × 10−2 cm2 V−1 s−1) was comparable to that of the crystalline naphthalenebisimide molecule itself (9 × 10−3 cm2 V−1 s−1), which is a great achievement, since the complex now offers a package of solution-processable n-type semiconductor polymer with mobility equivalent to that of a small crystalline molecule.


Journal of Materials Chemistry C | 2014

Structure–property relationship in charge transporting behaviour of room temperature liquid crystalline perylenebisimides

K. P. Prajitha; S. Chithiravel; K. Krishnamoorthy; S. K. Asha

A homologous series of pentadecyl phenol functionalized perylenebisimide (PBI) terminated with trialkoxy gallate esters was synthesized, where the terminal alkyl chain length was varied from n = 4 to 12 (PBI-En). The thermotropic liquid crystalline (LC) characteristics of the molecules were analyzed using differential scanning calorimetry (DSC), polarized light microscopy (PLM) combined with variable temperature wide angle X-ray diffraction (WXRD) techniques. A clear odd–even oscillation was observed in the melting as well as isotropization enthalpies as a function of alkyl spacer length in the terminal gallate unit, with the even spacers exhibiting higher values. The higher members of the series with n > 8 exhibited thermotropic liquid crystalline textures in the PLM, which remained stable until room temperature. The nature of the LC phase was identified to be columnar rectangular and columnar hexagonal based on detailed analysis of the WXRD pattern recorded in the LC phase. The WXRD pattern of the room temperature LC frozen samples indicated a nearly constant intra columnar stack distance of ∼3.7 A for all the members. The space-charge-limited current (SCLC) values of the LC frozen sample films were analyzed for dependence of the bulk mobility estimate on the nature of the LC phase. The columnar hexagonal phase exhibited a mobility value one order (10−3 cm2 V−1 s−1) higher than that of crystalline (10−4 cm2 V−1 s−1) and two orders higher than that of columnar rectangular phase (10−5 cm2 V−1 s−1), indicating a strong dependence of packing on bulk mobility.


ACS Applied Materials & Interfaces | 2014

Random copolyesters containing perylene bisimide: flexible films and fluorescent fibers.

S. Kumari Nisha; S. K. Asha

Random copolyesters of poly(l-lactic acid) (PLLA) and [poly(1,4-cyclohexylenedimethylene-1,4- cyclohexanedicarboxylate)] (PCCD) incorporating varying mol ratios of perylene bisimide (PBI) were developed via a high-temperature solution-blending approach. PCCD incorporating PBI was developed by melt polycondenzation followed by a polyester-polyester transesterification reaction between PCCD-PBI and PLLA. The polymers exhibited good solubility in common organic solvents and formed free-standing films, which showed bright red emission upon irradiation with ultraviolet radiation. A solid state fluorescence quantum yield of 10% was observed for this PBI based polyester, which was much higher than that reported in literature for PBI based polymers in the solid state (<1%). Strong red fluorescent nanofibers of these polymers were successfully constructed by electrospinning technique. A random copolyester incorporating donor based on oligo(p-pheneylenevinylene) (OPV) and PBI as acceptor chromophore was also synthesized and fluorescence microscopy images of the electrospun fibers of this polymer exhibited blue, green and red emission upon excitation at different wavelengths. The high temperature solution blending approach involving a high molecular weight polymer and a suitably functionalized π conjugated molecule described here is a unique method by which 1D nanostructures of a wide range of π-conjugated chromophores could be fabricated having strong fluorescence, with the scope of application in nanoscale optoelectronics, biological devices, as well as sensing.


ACS Applied Materials & Interfaces | 2014

Nanostructured donor-acceptor self assembly with improved photoconductivity.

B. Saibal; A. Z. Ashar; R. Nandini Devi; K. S. Narayan; S. K. Asha

Nanostructured supramolecular donor-acceptor assemblies were formed when an unsymmetrical N-substituted pyridine functionalized perylenebisimide (UPBI-Py) was complexed with oligo(p-phenylenevinylene) (OPVM-OH) complementarily functionalized with hydroxyl unit and polymerizable methacrylamide unit at the two termini. The resulting supramolecular complex [UPBI-Py (OPVM-OH)]1.0 upon polymerization by irradiation in the presence of photoinitiator formed well-defined supramolecular polymeric nanostructures. Self-assembly studies using fluorescence emission from thin film samples showed that subtle structural changes occurred on the OPV donor moiety following polymerization. The 1:1 supramolecular complex showed red-shifted aggregate emission from both OPV (∼500 nm) and PBI (∼640 nm) units, whereas the OPV aggregate emission was replaced by intense monomeric emission (∼430 nm) upon polymerizing the methacrylamide units on the OPVM-OH. The bulk structure was studied using wide-angle X-ray diffraction (WXRD). Complex formation resulted in distinct changes in the cell parameters of OPVM-OH. In contrast, a physical mixture of 1 mol each of OPVM-OH and UPBI-Py prepared by mixing the powdered solid samples together showed only a combination of reflections from both parent molecules. Thin film morphology of the 1:1 molecular complex as well as the supramolecular polymer complex showed uniform lamellar structures in the domain range <10 nm. The donor-acceptor supramolecular complex [UPBI-Py (OPVM-OH)]1.0 exhibited space charge limited current (SCLC) with a bulk mobility estimate of an order of magnitude higher accompanied by a higher photoconductivity yield compared to the pristine UPBI-Py. This is a very versatile method to obtain spatially defined organization of n and p-type semiconductor materials based on suitably functionalized donor and acceptor molecules resulting in improved photocurrent response using self-assembly.


Journal of Materials Chemistry C | 2013

Solvent-induced self-assembly of hydrogen bonded P4VP-perylenebisimide comb polymer

Rekha Narayan; S. K. Asha

Polymeric supramolecular assemblies were formed when an unsymmetric perylenebisimide substituted with ethylhexyl chains on one end and functionalized with 3-pentadecylphenol at the other termini (PDP-UPBI) was complexed with poly(4-vinylpyridine) (P4VP) via hydrogen-bonding interaction. The self-assembly behavior of this polymeric supramolecule poly(4-vinylpyridine)-perylenebisimide P4VP(PDP-UPBI)1.0 was studied in solvents of varying polarity like chloroform (CHCl3) and methylcyclohexane (MCH). Variable concentration and variable temperature proton NMR studies in CDCl3 and deuterated 1,1,2,2-tetrachloroethane (TCE), respectively, revealed the polymeric nature of the perylenebisimide upon complexation and the high thermal stability of the self organized structures in solution. The improved solubility afforded by the complexation enabled variable temperature UV-Vis absorption studies in the non-polar solvent MCH, which indicated the existence of strong face-to-face stacked H-type aggregates. The strong fluorescence quenching in MCH also supported the identification of the nature of aggregates as co-facial H-type. Although the existence of aggregates was not very evident in dilute solutions of chloroform, the fluorescence of the P4VP(PDP-UPBI)1.0 was quenched compared to that of PDP-UPBI. Thin spin coated films of the complex from chloroform exhibited features of rotationally displaced H-type aggregates characterized by blue shift of absorption maxima and the appearance of a new red shifted peak at 540 nm with weak aggregate emission beyond 600 nm. Morphology analysis of drop cast samples using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the formation of micrometer long multilamellar nanofibers from CHCl3 and two dimensional multilamellar nanosheets upon switching the solvent to MCH.

Collaboration


Dive into the S. K. Asha's collaboration.

Top Co-Authors

Avatar

K. S. Narayan

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Rekha Narayan

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

S. Chithiravel

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Chinmay G. Nardele

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

R. Nandini Devi

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

S. Kumari Nisha

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Satyaprasad P. Senanayak

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Shekhar Shinde

Academy of Scientific and Innovative Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Saibal

Academy of Scientific and Innovative Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge