Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. K. Leggett is active.

Publication


Featured researches published by S. K. Leggett.


The Astronomical Journal | 2003

The USNO-B Catalog

David G. Monet; Stephen E. Levine; Blaise Canzian; Harold D. Ables; Alan R. Bird; Conard C. Dahn; Harry H. Guetter; Hugh C. Harris; Arne A. Henden; S. K. Leggett; Harold F. Levison; Christian B. Luginbuhl; Joan Martini; Alice K. B. Monet; Jeffrey A. Munn; Jeffrey R. Pier; Albert R. Rhodes; Betty Riepe; Stephen Sell; Ronald C. Stone; Frederick J. Vrba; Richard L. Walker; Gart Westerhout; Robert J. Brucato; I. Neill Reid; William Schoening; M. Hartley; Mike Read; Sara Tritton

USNO-B is an all-sky catalog that presents positions, proper motions, magnitudes in various optical passbands, and star/galaxy estimators for 1,042,618,261 objects derived from 3,643,201,733 separate observations. The data were obtained from scans of 7435 Schmidt plates taken for the various sky surveys during the last 50 years. USNO-B1.0 is believed to provide all-sky coverage, completeness down to V = 21, 02 astrometric accuracy at J2000, 0.3 mag photometric accuracy in up to five colors, and 85% accuracy for distinguishing stars from nonstellar objects. A brief discussion of various issues is given here, but the actual data are available from the US Naval Observatory Web site and others.


The Astronomical Journal | 2001

A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6* **

Xiaohui Fan; Vijay K. Narayanan; Robert H. Lupton; Michael A. Strauss; Gillian R. Knapp; Robert H. Becker; Richard L. White; L. Pentericci; S. K. Leggett; Zoltan Haiman; James E. Gunn; Željko Ivezić; Donald P. Schneider; Scott F. Anderson; J. Brinkmann; Neta A. Bahcall; Andrew J. Connolly; István Csabai; Mamoru Doi; Masataka Fukugita; T. R. Geballe; Eva K. Grebel; Daniel R. Harbeck; Gregory S. Hennessy; D. Q. Lamb; Gajus A. Miknaitis; Jeffrey A. Munn; Robert C. Nichol; Sadanori Okamura; Jeffrey R. Pier

We present the results from a survey of i-dropout objects selected from ~1550 deg2 of multicolor imaging data from the Sloan Digital Sky Survey to search for luminous quasars at z 5.8. Objects with i*-z* > 2.2 and z* 0.90. The ARC 3.5 m spectrum of SDSSp J103027.10+052455.0 shows that over a range of ~300 A immediately blueward of the Lyα emission, the average transmitted flux is only 0.003 ± 0.020 times that of the continuum level, consistent with zero flux over a ~300 A range of the Lyα forest region and suggesting a tentative detection of the complete Gunn-Peterson trough. The existence of strong metal lines in the quasar spectra suggests early metal enrichment in the quasar environment. The three new objects, together with the previously published z = 5.8 quasar SDSSp J104433.04-012502.2, form a complete color-selected flux-limited sample at z 5.8. We estimate the selection function of this sample, taking into account the estimated variations in the quasar spectral energy distribution, as well as observational photometric errors. We find that at z = 6, the comoving density of luminous quasars at M1450 < -26.8 (H0 = 50 km s-1 Mpc-1, Ω = 1) is 1.1 × 10-9 Mpc-3. This is a factor of ~2 lower than that at z ~ 5 and is consistent with an extrapolation of the observed quasar evolution at z < 5. Using the current sample, we discuss the constraint on the shape of the quasar luminosity function and the implications for the contribution of quasars to the ionizing background at z ~ 6. The luminous quasars discussed in the paper have central black hole masses of several times 109 M⊙ by the Eddington argument, with likely dark halo masses on the order of 1013 M⊙. Their observed space density provides a sensitive test of models of quasar and galaxy formation at high redshift.


Monthly Notices of the Royal Astronomical Society | 2006

The UKIRT Infrared Deep Sky Survey ZY JHK photometric system: passbands and synthetic colours

Paul C. Hewett; Stephen J. Warren; S. K. Leggett; Simon T. Hodgkin

The UKIRT Infrared Deep Sky Survey is a set of v e surveys of complementary combinations of area, depth, and Galactic latitude, which began in 2005 May. The surveys use the UKIRT Wide Field Camera (WFCAM), which has a solid angle of 0.21deg 2 . Here we introduce and characterise the ZYJHK photometric system of the camera, which covers the wavelength range 0:83 2:37 m. We synthesise response functions for the v e passbands, and compute colours in the WFCAM, SDSS and 2MASS bands, for brown dwarfs, stars, galaxies and quasars of dieren t types. We provide a recipe for others to compute colours from their own spectra. Calculations are presented in the Vega system, and the computed osets to the AB system are provided, as well as colour equations between WFCAM lters and the SDSS and 2MASS passbands. We highlight the opportunities presented by the new Y lter at 0:97 1:07 m for surveys for hypothetical Y dwarfs (brown dwarfs cooler than T), and for quasars of very{high redshift, z > 6:4.


The Astrophysical Journal | 2006

A Unified Near-Infrared Spectral Classification Scheme for T Dwarfs

Adam J. Burgasser; T. R. Geballe; S. K. Leggett; J. Davy Kirkpatrick; David A. Golimowski

A revised near-infrared classification scheme for T dwarfs is presented, based on and superseding prior schemes developed by Burgasser and coworkers and Geballe and coworkers, and defined following the precepts of the MK process.DrawingfromtwolargespectroscopiclibrariesofTdwarfsidentifiedlargelyintheSloanDigitalSkySurvey and the Two Micron All Sky Survey, nine primary spectral standards and five alternate standards spanning spectral types T0‐T8 are identified that match criteria of spectral character, brightness, absence of a resolved companion, and accessibility from both the Northern and Southern Hemispheres. The classification of T dwarfs is formally made by the direct comparison of near-infrared spectral data of equivalent resolution to the spectra of these standards. Alternately, we have redefined five key spectral indices measuring the strengths of the major H2O and CH4 bands in the 1‐2.5 � m region that may be used as a proxy to direct spectral comparison. Two methods of determining Tspectral type using these indices are outlined and yield equivalent results. These classifications are also equivalent to those from prior schemes, implying that no revisionof existing spectral typetrends is required. The one-dimensional scheme presented here provides a first step toward the observational characterization of the lowest luminosity brown dwarfs currently known. Future extensions to incorporate spectral variations arising from differences in photospheric dust content, gravity, and metallicity are briefly discussed. A compendium of all currently known T dwarfs with updated classifications is presented.


The Astronomical Journal | 2004

Near-Infrared Photometry and Spectroscopy of L and T Dwarfs: The Effects of Temperature, Clouds, and Gravity

Gillian R. Knapp; S. K. Leggett; Xiaohui Fan; Mark S. Marley; Thomas R. Geballe; David A. Golimowski; Douglas P. Finkbeiner; James E. Gunn; Joseph F. Hennawi; Zeljko Ivezic; Robert H. Lupton; David J. Schlegel; Michael A. Strauss; Zlatan I. Tsvetanov; Kuenley Chiu; Erik Andrew Hoversten; Karl Glazebrook; W. Zheng; M. A. Hendrickson; Colin C. Williams; Alan Uomoto; Frederick J. Vrba; Arne A. Henden; Christian B. Luginbuhl; Harry H. Guetter; Jeffrey A. Munn; Blaise Canzian; Donald P. Schneider; J. Brinkmann

We present new JHK photometry on the MKO-NIR system and JHK spectroscopy for a large sample of L and T dwarfs. Photometry has been obtained for 71 dwarfs, and spectroscopy for 56. The sample comprises newly identified very red objects from the Sloan Digital Sky Survey (SDSS) and known dwarfs from the SDSS and the Two Micron All Sky Survey (2MASS). Spectral classification has been carried out using four previously defined indices from Geballe et al. that measure the strengths of the near infrared water and methane bands. We identify nine new L8?9.5 dwarfs and 14 new T dwarfs from SDSS, including the latest yet found by SDSS, the T7 dwarf SDSS J175805.46+463311.9. We classify 2MASS J04151954-0935066 as T9, the latest and coolest dwarf found to date. We combine the new results with our previously published data to produce a sample of 59 L dwarfs and 42 T dwarfs with imaging data on a single photometric system and with uniform spectroscopic classification. We compare the near-infrared colors and absolute magnitudes of brown dwarfs near the L?T transition with predictions made by models of the distribution and evolution of photospheric condensates. There is some scatter in the Geballe et al. spectral indices for L dwarfs, suggesting that these indices are probing different levels of the atmosphere and are affected by the location of the condensate cloud layer. The near-infrared colors of the L dwarfs also show scatter within a given spectral type, which is likely due to variations in the altitudes, spatial distributions, and thicknesses of the clouds. We have identified a small group of late-L dwarfs that are relatively blue for their spectral type and that have enhanced FeH, H2O, and K I absorption, possibly due to an unusually small amount of condensates. The scatter seen in the H-K color for late-T dwarfs can be reproduced by models with a range in surface gravity. The variation is probably due to the effect on the K-band flux of pressure-induced H2 opacity. The correlation of H-K color with gravity is supported by the observed strengths of the J-band K I doublet. Gravity is closely related to mass for field T dwarfs with ages greater than108 yr and the gravities implied by the H-K colors indicate that the T dwarfs in our sample have masses in the range 15?75MJupiter. One of the SDSS dwarfs, SDSS J111010.01+011613.1, is possibly a very low mass object, with log g ~ 4.2?4.5 and mass ~ 10?15MJupiter.


The Astronomical Journal | 2001

Solar System Objects Observed in the Sloan Digital Sky Survey Commissioning Data

Željko Ivezić; Serge Tabachnik; Roman R. Rafikov; Robert H. Lupton; Thomas P. Quinn; Mark Hammergren; Laurent Eyer; Jennifer Chu; John C. Armstrong; Xiaohui Fan; Kristian Finlator; T. R. Geballe; James E. Gunn; Gregory S. Hennessy; Gillian R. Knapp; S. K. Leggett; Jeffrey A. Munn; Jeffrey R. Pier; Constance M. Rockosi; Donald P. Schneider; Michael A. Strauss; Brian Yanny; Jonathan Brinkmann; István Csabai; Robert B. Hindsley; Stephen M. Kent; D. Q. Lamb; Bruce Margon; Timothy A. McKay; Patrick Waddel

We discuss measurements of the properties of D13,000 asteroids detected in 500 deg2 of sky in the Sloan Digital Sky Survey (SDSS) commissioning data. The moving objects are detected in the magnitude range 14 \ r* \ 21.5, with a baseline of D5 minutes, resulting in typical velocity errors of D3%. Extensive tests show that the sample is at least 98% complete, with a contamination rate of less than 3%. We —nd that the size distribution of asteroids resembles a broken power law, independent of the heliocentric distance: D~2.3 for 0.4 km, and D~4 for 5


The Astronomical Journal | 2004

Preliminary Parallaxes of 40 L and T Dwarfs from the US Naval Observatory Infrared Astrometry Program

Frederick J. Vrba; Arne A. Henden; Christian B. Luginbuhl; Harry H. Guetter; Jeffrey A. Munn; Blaise Canzian; Adam J. Burgasser; J. Davy Kirkpatrick; Xiaohui Fan; T. R. Geballe; David A. Golimowski; Gillian R. Knapp; S. K. Leggett; Donald P. Schneider; J. Brinkmann

We present preliminary trigonometric parallaxes and proper motions for 22 L dwarfs and 18 T dwarfs measured using the ASTROCAM infrared imager on the US Naval Observatory (USNO) 1.55 m Strand Astrometric Reflector. The results presented here are based on observations obtained between 2000 September and 2002 November; about half of the objects have an observational time baseline of Δt = 1.3 yr and half Δt = 2.0 yr. Despite these short time baselines, the astrometric quality is sufficient to produce significant new results, especially for the nearer T dwarfs. Seven objects are in common with the USNO optical CCD parallax program for quality control and seven in common with the European Southern Observatory 3.5 m New Technology Telescope parallax program. We compare astrometric quality with both of these programs. Relative to absolute parallax corrections are made by employing Two Micron All Sky Survey and/or Sloan Digital Sky Survey photometry for reference-frame stars. We combine USNO infrared and optical parallaxes with the best available California Institute of Technology (CIT) system photometry to determine MJ, MH, and MK values for 37 L dwarfs between spectral types L0 and L8 and 19 T dwarfs between spectral types T0.5 and T8 and present selected absolute magnitude versus spectral type and color diagrams, based on these results. Luminosities and temperatures are estimated for these objects. Of special interest are the distances of several objects that are at or near the L-T dwarf boundary so that this important transition can be better understood. The previously reported early to mid T dwarf luminosity excess is clearly confirmed and found to be present at J, H, and K. The large number of objects that populate this luminosity-excess region indicate that it cannot be due entirely to selection effects. The T dwarf sequence is extended to MJ ≈ 16.9 by 2MASS J041519-0935, which, at d = 5.74 pc, is found to be the least luminous [log(L/L⊙) = -5.58] and coldest (Teff ≈ 760 K) brown dwarf known. Combining results from this paper with earlier USNO CCD results we find that, in contrast to the L dwarfs, there are no examples of low-velocity (Vtan < 20 km s-1) T dwarfs. This is consistent with the T dwarfs in this study being generally older than the L dwarfs. We briefly discuss future directions for the USNO infrared astrometry program.


Monthly Notices of the Royal Astronomical Society | 2001

JHK standard stars for large telescopes: the UKIRT Fundamental and Extended lists

Timothy G. Hawarden; S. K. Leggett; Michael B. Letawsky; D. R. Ballantyne; Mark M. Casali

We present high-precision JHK photometry with the 3.8-m UK Infrared Telescope (UKIRT) of 82 standard stars, 28 from the widely used preliminary list known as the ‘UKIRT Faint Standards’, referred to here as the Fundamental List, and 54 additional stars referred to as the Extended List. The stars have 9:4 , K , 15:0 and all or most should be readily observable with imaging array detectors in normal operating modes on telescopes of up to 10-m aperture. Many are accessible from the southern hemisphere. Arcsec-accuracy positions (J2000, epoch ,1998) are given, together with optical photometry and spectral types from the literature, where available, or inferred from the J 2 K colour. K-band finding charts are provided for stars with proper motions exceeding 0.3arcsecyr 21 . We discuss some pitfalls in the construction of flat-fields for array imagers and a method to avoid them. On 30 nights between late 1994 and early 1998 the stars from the Fundamental List, which were used as standards for thewhole programme, were observed on an average of 10 nights each, and those from the Extended List on an average of six nights. The average internal standard error of the mean results for the K magnitudes is 0.005mag; for the J 2 H colours it is 0.003mag for the Fundamental List stars and 0.005mag for those of the Extended List; for H 2 K the average is 0.004mag. The results are on the natural system of the IRCAM3 imager, which used a 256 � 256 InSb detector array with ‘standard’ JHK filters, behind gold-coated fore-optics and a gold- or silver-dielectric coated dichroic. We give colour transformations on to the CIT, Arcetri and LCO/Palomar NICMOS systems, and preliminary transformations on to the system defined by the new Mauna Kea Observatory near-infrared filter set.


Monthly Notices of the Royal Astronomical Society | 2006

The UKIRT Infrared Deep Sky Survey Early Data Release

Simon Dye; S. J. Warren; Nigel Hambly; N. J. G. Cross; S. T. Hodgkin; M. J. Irwin; A. Lawrence; A. J. Adamson; Omar Almaini; A. C. Edge; Paul Hirst; R. F. Jameson; P. W. Lucas; C. van Breukelen; J. Bryant; Mark M. Casali; Ross Collins; Gavin B. Dalton; Jonathan Ivor Davies; C. J. Davis; James P. Emerson; D. W. Evans; S. Foucaud; E. Gonzales-Solares; Paul C. Hewett; Timothy Kendall; T. H. Kerr; S. K. Leggett; N. Lodieu; J. Loveday

This paper defines the UKIRT Infrared Deep Sky Survey (UKIDSS) Early Data Release (EDR). UKIDSS is a set of five large near-infrared surveys being undertaken with the United Kingdom Infrared Telescope Wide Field Camera (WFCAM). The programme began in 2005 May and has an expected duration of 7 yr. Each survey uses some or all of the broad-band filter complement ZY JHK. The EDR is the first public release of data to the European Southern Observatory (ESO) community. All worldwide releases occur after a delay of 18 months from the ESO release. The EDR provides a small sample data set, ∼50 deg(2) (about 1 per cent of the whole of UKIDSS), that is a lower limit to the expected quality of future survey data releases. In addition, an EDR+ data set contains all EDR data plus extra data of similar quality, but for areas not observed in all of the required filters (amounting to ∼220 deg(2)). The first large data release, DR1, will occur in mid-2006. We provide details of the observational implementation, the data reduction, the astrometric and photometric calibration and the quality control procedures. We summarize the data coverage and quality (seeing, ellipticity, photometricity, depth) for each survey and give a brief guide to accessing the images and catalogues from the WFCAM Science Archive.


The Astrophysical Journal | 2012

Neglected Clouds in T and Y Dwarf Atmospheres

Caroline V. Morley; Jonathan J. Fortney; Mark S. Marley; Channon Visscher; Didier Saumon; S. K. Leggett

As brown dwarfs cool, a variety of species condense in their atmospheres, forming clouds. Iron and silicate clouds shape the emergent spectra of L dwarfs, but these clouds dissipate at the L/T transition. A variety of other condensates are expected to form in cooler T dwarf atmospheres. These include Cr, MnS, Na2S, ZnS, and KCl, but the opacity of these optically thinner clouds has not been included in previous atmosphere models. Here, we examine their effect on model T and Y dwarf atmospheres. The cloud structures and opacities are calculated using the Ackerman & Marley (2001) cloud model, which is coupled to an atmosphere model to produce atmospheric pressure-temperature profiles in radi ative-convective equilibrium. We generate a suite of models between Teff = 400 and 1300 K, log g=4.0 and 5.5, and condensate sedimentation efficiencies fro m fsed=2 to 5. Model spectra are compared to two red T dwarfs, Ross 458C and UGPS 0722‐05; models that include clouds are found to match observed spectra significa ntly better than cloudless models. The emergence of sulfide clouds in cool atmospheres, particularly Na 2S, may be a more natural explanation for the “cloudy” spectra of these objects, rather than the re-emergence of si licate clouds that wane at the L-to-T transition. We find that sulfide clouds provide a mechanism to match the near- and mid-infrared colors of observed T dwarfs. Our results indicate that including the opacity of condensa tes in T dwarf atmospheres is necessary to accurately determine the physical characteristics of many of the obser ved objects. Subject headings:brown dwarfs — stars: atmospheres

Collaboration


Dive into the S. K. Leggett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Didier Saumon

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. J. Pinfield

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar

B. Burningham

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. R. Geballe

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Hugh R. A. Jones

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. W. Lucas

University of Hertfordshire

View shared research outputs
Researchain Logo
Decentralizing Knowledge