Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. K. Patwardhan is active.

Publication


Featured researches published by S. K. Patwardhan.


Mountain Research and Development | 2013

Projected Climate Change in the Hindu Kush–Himalayan Region By Using the High-resolution Regional Climate Model PRECIS

Ashwini Kulkarni; S. K. Patwardhan; K. Krishna Kumar; Karamuri Ashok; Raghavan Krishnan

Abstract The Hindu Kush–Himalayan (HKH) region is characterized by a variety of climatic conditions from tropical to alpine. It has been documented that the rates of warming in the HKH region are significantly higher than the global average and that the warming is occurring at much higher rates in the high-altitude regions than in the low-altitude regions. Mountainous environments are considered sensitive indicators of climate change. Hence this study examined the potential impact of global warming on the HKH region by applying Hadley Centres high-resolution regional climate model PRECIS (Providing Regional Climates for Impact Studies) to 3 subregions: the western, central, and eastern Himalaya. The physical mechanisms that drive warming are different for the 3 regions, and the western Himalaya has 2 major rainy seasons, whereas the central and eastern Himalaya have only one. This study therefore focused on the common rainy season (June–September), during which all 3 regions receive the highest proportion of their annual rainfall. The 3 PRECIS simulations that correspond to the Intergovernmental Panel on Climate Changes A1B emissions scenario were carried out for a continuous period from 1961 to 2098. They were validated with high-resolution (0.25° latitude × 0.25° longitude) data provided by the Asian Precipitation—Highly Resolved Observational Data Integration Towards Evaluation of the Water Resources (APHRODITE) project and by the US National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data. The model was reasonably effective in simulating the monsoon climate over the HKH region. The climate projections were examined over the short (2011–2040), medium (2041–2070), and long term (2071–2098). The model projections indicate that significant warming will occur throughout the HKH region toward the end of the 21st century. Summer monsoon precipitation is expected to be 20–40% higher in 2071–2098 than it was in the baseline period (1961–1990). The 3 Quantifying Uncertainty in Model Predictions simulations show large differences in projections in the western Himalaya.


Climate Dynamics | 2015

Projected changes in climate over the Indus river basin using a high resolution regional climate model (PRECIS)

R. Rajbhandari; Arun B. Shrestha; Ashwini Kulkarni; S. K. Patwardhan; Sagar Ratna Bajracharya

A regional climate modelling system, the Providing REgional Climates for Impacts Studies developed by the Hadley Centre for Climate Prediction and Research, has been used to study future climate change scenarios over Indus basin for the impact assessment. In this paper we have examined the three Quantifying Uncertainty in Model Predictions simulations selected from 17-member perturbed physics ensemble generated using Hadley Centre Coupled Module. The climate projections based on IPCC SRES A1B scenario are analysed over three time slices, near future (2011–2040), middle of the twenty first century (2041–2070), and distant future (2071–2098). The baseline simulation (1961–1990) was evaluated with observed data for seasonal and spatial patterns and biases. The model was able to resolve features on finer spatial scales and depict seasonal variations reasonably well, although there were quantitative biases. The model simulations suggest a non-uniform change in precipitation overall, with an increase in precipitation over the upper Indus basin and decrease over the lower Indus basin, and little change in the border area between the upper and lower Indus basins. A decrease in winter precipitation is projected, particularly over the southern part of the basin. Projections indicate greater warming in the upper than the lower Indus, and greater warming in winter than in the other seasons. The simulations suggest an overall increase in the number of rainy days over the basin, but a decrease in the number of rainy days accompanied by an increase in rainfall intensity in the border area between the upper and lower basins, where the rainfall amount is highest.


Natural Hazards | 2012

About the observed and future changes in temperature extremes over India

J. V. Revadekar; D. R. Kothawale; S. K. Patwardhan; G. B. Pant; K. Rupa Kumar

An attempt is made in the present study to analyse observed and model simulated temperature extremes over Indian region. Daily maximum and minimum temperature data at 121 well-distributed stations for the period 1970–2003 have been used to study the observed changes in objectively defined values of temperature extremes. In addition, an assessment of future scenarios of temperature extremes associated with increase in the concentration of atmospheric greenhouse gases is done using simulations of a state-of-the-art regional climate modelling system known as PRECIS (Providing Regional Climate for Impact Studies) performed to generate the climate for the present (1961–1990) and future projections for the period 2071–2100. Observational analysis done with 121 stations suggests the widespread warming through increase in intensity and frequency of hot events and also with decrease in frequency of cold events. More than 75% stations show decreasing trend in number of cold events and about 70% stations show increasing trend in hot events. Percentage of stations towards the warming through intensity indices of highest maximum temperature, lowest minimum temperature is 78 and 71% stations, respectively. Remaining stations show opposite trends, however, most of them are statistically insignificant. Observational analysis for India as a whole also shows similar results. Composite anomalies for monthly temperature extremes over two equal parts of the data period show increase (decrease) in the frequency of hot (cold) events for all months. In general, PRECIS simulations under both A2 and B2 scenarios indicate increase (decrease) in hot (cold) extremes towards the end of twenty-first century. Both show similar patterns, but the B2 scenario shows slightly lower magnitudes of the projected changes. Temperatures are likely to increase in entire calendar year, but the changes in winter season are expected to be prominent. Diurnal temperature range is expected to decrease in winter (JF) and pre-monsoon (MAM) months.


Advances in Meteorology | 2011

Characteristic Features of Precipitation Extremes over India in the Warming Scenarios

J. V. Revadekar; S. K. Patwardhan; K. Rupa Kumar

The detection of possible changes in extreme climate events, in terms of the frequency, intensity as well as duration assumes profound importance on the local, regional, and national scales, due to the associated critical socioeconomic consequences. Therefore, an attempt is made in this paper to evaluate various aspects of future projections of precipitation extremes over India, as projected by a state-of-art regional climate modeling system, known as PRECIS (Providing REgional Climates for Impacts Studies) towards the end of the 21st century (that is, 2071–2100) using standardized indices. Study reveals that PRECIS simulations under scenarios of increasing greenhouse gas concentration and sulphate aerosols indicate marked increase in precipitation towards the end of the 21st century and is expected to increase throughout the year. However the changes in daily precipitation and the precipitation extremes during summer monsoon (June through September) season are prominent than during the rest of year. PRECIS simulations under both A2 and B2 scenarios indicate increase in frequency of heavy precipitation events and also enhancement in their intensity towards the end of the 21st century. Both A2 and B2 scenarios show similar patterns of projected changes in the precipitation extremes towards the end of the 21st century. However, the magnitudes of changes in B2 scenario are on the lower side.


International Journal of Climatology | 2000

Meso‐scale distribution of summer monsoon rainfall near the Western Ghats (India)

S. K. Patwardhan; G.C. Asnani

The spatial distribution of southwest monsoon rainfall is studied over Maharashtra State (India), which includes part of the well-known Western Ghats mountain range, near its western boundary, running almost from north to south, perpendicular to the summer monsoon current in the lower troposphere. Meso-scale analysis of daily rainfall is performed for Maharashtra State, including the Western Ghats, for the two mid-monsoon months of July and August, during the 10-year period of 1971-1980. Strong and weak monsoon days were identified for the 5-year period of 1976-1980. The meso-scale pattern of average daily rainfall is obtained separately for strong and for weak monsoon conditions. All these average patterns show the following features: (i) the rainfall increases rapidly from the Arabian Sea coast close to the line of maximum height of the Western Ghats; (ii) there are two rainfall maxima corresponding to the two mountain peaks parallel to the coast line; (iii) between the two mountain peaks, there is a valley which is narrow at the western end (upwind end), broadening towards the east (on the downwind side). Ground contour height of the valley rises eastwards and ends as a part of the Deccan Plateau east of the Ghats. Here the valley opens out like a funnel with higher mountains flanking its two sides. In the valley, the rainfall increases from the coast up to the line of maximum height of the Ghats, and then decreases eastwards towards the plateau. The rainfall isopleths also take a funnel-shaped configuration. An interesting feature is that near the wider section of the valley funnel, there is a rainfall minimum and then the rainfall increases further eastwards on the downwind side. This feature of rainfall minimum is somewhat similar to the rainfall minimum reported by Asnani and Kinuthia (personal communication); Asnani (Asnani GC. 1993. Tropical Meteorology, Vol. I. Prof. G.C. Asnani: Pune, India; 603) attributed the rainfall minimum to the Bernoulli effect. A somewhat similar phenomenon is assumed in the present study area.


International Journal of Atmospheric Sciences | 2014

Impact of Climate Change on the Characteristics of Indian Summer Monsoon Onset

S. K. Patwardhan; Ashwini Kulkarni; K. Krishna Kumar

A high resolution regional climate modeling system, known as PRECIS (Providing REgional Climate for Impact Studies), developed by Hadley Centre for Climate Prediction and Research, UK, is applied for Indian subcontinent to assess the impact of climate change on the summer monsoon onset characteristics. The present day simulation (1961–1990) with PRECIS is evaluated for the characteristics of onset over Kerala, southernmost part of India, where the monsoon sets in over Indian landmass. The meteorological parameters like precipitation, outgoing long wave radiation (OLR), and low level winds are analysed to study the monsoon onset over Kerala. The model is able to capture the sudden and sharp increase of rainfall associated with the onset. The rapid built-up of convective activity over the southeastern Arabian Sea and Bay of Bengal is well represented by the model. PRECIS simulations, under scenarios of increasing greenhouse gas concentrations and sulphate aerosols, are analysed to study the likely changes in the onset characteristics in future, towards the end of present century (2071–2100). The analysis does not indicate significant difference in the mean onset dates in A2 and B2 scenarios. However, the variability of onset date is likely to be more towards the end of the 21st century especially in A2 scenario.


Advances in Atmospheric Sciences | 1993

Tropical Stratospheric Circulation and Monsoon Rainfall

A. B. Sikder; S. K. Patwardhan; H. N. Bhalme

Interannual variability of both SW monsoon (June–September) and NE monsoon (October–December) rainfall over subdivisions of Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu have been examined in relation to monthly zonal wind anomaly for 10 hPa, 30 hPa and 50 hPa at Balboa (9°N, 80°W) for the 29 year period (1958–1986). Correlations of zonal wind anomalies to SW monsoon rainfall (r=0.57, significant at 1% level) is highest with the longer lead time (August of the previous year) at 10 hPa level suggesting some predictive value for Coastal Andhra Pradesh. The probabilities estimated from the contingency table reveal non-occurrence of flood during easterly wind anomalies and near non-occurrence of drought during westerly anomalies for August of the previous year at 10 hPa which provides information for forecasting of performance of SW monsoon over Coastal Andhra Pradesh. However, NE monsoon has a weak relationship with zonal wind anomalies of 10 hPa, 30 hPa and 50 hPa for Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu.Tracks of the SW monsoon storms and depressions in association with the stratospheric wind were also examined to couple with the fluctuations in SW monsoon rainfall. It is noted that easterly / westerly wind at 10 hPa, in some manner, suppresses / enhances monsoon storms and depressions activity affecting their tracks.


Journal of Earth Science & Climatic Change | 2014

Assessing Hydrological Response to Changing Climate in the Krishna Basin of India

Kulkarni Bd; N. R. Deshpande; S. K. Patwardhan; Bansod Sd

Impact of climate change on water balance components in the Krishna river basin are investigated using a semidistributed hydrological model namely Soil and Water Assessment Tool (SWAT). The model is calibrated and validated using the measured stream flow and meteorological data for the period (1970-1990) at a single guage outlet. The model has been used further for hydrologic parameter simulations. Daily climate simulations from regional climate model PRECIS (Providing Regional Climates for Impacts Studies) is used as input for running SWAT and monthly hydrologic parameters such as precipitation, surface flow, water yield, Evapotranspiration (ET) and Potential Evapotranspiration (PET) are generated under the assumption of no change in Land Use and Land Cover (LULC) pattern over time. Simulations at 23 sub-basins of the Krishna basin have been obtained for the control runs (1961-1990) and the for two time slices of future scenarios (2011-2040) and (2041-2070). Model projections indicate increase in the annual discharge, surface runoff and base flow in the basin in mid-century.


Current Science | 2006

High-resolution climate change scenarios for India for the 21st century

K. Rupa Kumar; A. K. Sahai; K. Krishna Kumar; S. K. Patwardhan; P. K. Mishra; J. V. Revadekar; K. Kamala; G. B. Pant


Archive | 2011

Simulated projections for summer monsoon climate over India by a high-resolution regional climate model (PRECIS)

K. Krishna Kumar; S. K. Patwardhan; Ashwini Kulkarni; K. Kamala; K. Koteswara Rao; R. Jones

Collaboration


Dive into the S. K. Patwardhan's collaboration.

Top Co-Authors

Avatar

Ashwini Kulkarni

Indian Institute of Tropical Meteorology

View shared research outputs
Top Co-Authors

Avatar

K. Krishna Kumar

Indian Institute of Tropical Meteorology

View shared research outputs
Top Co-Authors

Avatar

J. V. Revadekar

Indian Institute of Tropical Meteorology

View shared research outputs
Top Co-Authors

Avatar

K. Kamala

Indian Institute of Tropical Meteorology

View shared research outputs
Top Co-Authors

Avatar

K. Rupa Kumar

Indian Institute of Tropical Meteorology

View shared research outputs
Top Co-Authors

Avatar

S. S. Sabade

Indian Institute of Tropical Meteorology

View shared research outputs
Top Co-Authors

Avatar

G. B. Pant

Indian Institute of Tropical Meteorology

View shared research outputs
Top Co-Authors

Avatar

H. N. Bhalme

Indian Institute of Tropical Meteorology

View shared research outputs
Top Co-Authors

Avatar

K. Koteswara Rao

Indian Institute of Tropical Meteorology

View shared research outputs
Top Co-Authors

Avatar

N. R. Deshpande

Indian Institute of Tropical Meteorology

View shared research outputs
Researchain Logo
Decentralizing Knowledge