Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. K. Satheesh is active.

Publication


Featured researches published by S. K. Satheesh.


Journal of Geophysical Research | 2011

Influences of the springtime northern Indian biomass burning over the central Himalayas

Rajesh Kumar; Manish Naja; S. K. Satheesh; Narendra Ojha; Hema Joshi; T. Sarangi; P. Pant; U. C. Dumka; Prashant Hegde; S. Venkataramani

The influences of the springtime northern Indian biomass burning are shown for the first time over the central Himalayas by using three years (2007-2009) of surface and space based observations along with a radiative transfer model. Near-surface ozone, black carbon (BC), spectral aerosol optical depths (AODs) and the meteorological parameters are measured at a high altitude site Nainital (29.37 degrees N, 79.45 degrees E, 1958 m amsl) located in the central Himalayas. The satellite observations include the MODIS derived fire counts and AOD (0.55 mu m), and OMI derived tropospheric column NO(2), ultraviolet aerosol index and single scattering albedo. MODIS fire counts and BC observations are used to identify the fire-impacted periods (372 h during 2007-2009) and hence the induced enhancements in surface BC, AOD (0.5 mu m) and ozone are estimated to be 1802 ng m(-3) (similar to 145%), 0.3 (similar to 150%) and 19 ppbv (similar to 34%) respectively. Large enhancements (53-100%) are also seen in the satellite derived parameters over a 2 degrees x 2 degrees region around Nainital. The present analysis highlights the northern Indian biomass burning induced cooling at the surface (-27 W m(-2)) and top of the atmosphere (-8 W m(-2)) in the lesser polluted high altitude regions of the central Himalayas. This cooling leads to an additional atmospheric warming of 19 W m(-2) and increases the lower atmospheric heating rate by 0.8 K day(-1). These biomass burning induced changes over the central Himalayan atmosphere during spring may also lead to enhanced short-wave absorption above clouds and might have an impact on the monsoonal rainfall.


Journal of Geophysical Research | 2013

Trends in aerosol optical depth over Indian region: Potential causes and impact indicators

S. Suresh Babu; M.R. Manoj; K. Krishna Moorthy; Mukunda M. Gogoi; Vijayakumar S. Nair; Sobhan Kumar Kompalli; S. K. Satheesh; K. Niranjan; K. Ramagopal; Pradip Kumar Bhuyan; Darshan Singh

The first regional synthesis of long-term (back to similar to 25 years at some stations) primary data (from direct measurement) on aerosol optical depth from the ARFINET (network of aerosol observatories established under the Aerosol Radiative Forcing over India (ARFI) project of Indian Space Research Organization over Indian subcontinent) have revealed a statistically significant increasing trend with a significant seasonal variability. Examining the current values of turbidity coefficients with those reported similar to 50 years ago reveals the phenomenal nature of the increase in aerosol loading. Seasonally, the rate of increase is consistently high during the dry months (December to March) over the entire region whereas the trends are rather inconsistent and weak during the premonsoon (April to May) and summer monsoon period (June to September). The trends in the spectral variation of aerosol optical depth (AOD) reveal the significance of anthropogenic activities on the increasing trend in AOD. Examining these with climate variables such as seasonal and regional rainfall, it is seen that the dry season depicts a decreasing trend in the total number of rainy days over the Indian region. The insignificant trend in AOD observed over the Indo-Gangetic Plain, a regional hot spot of aerosols, during the premonsoon and summer monsoon season is mainly attributed to the competing effects of dust transport and wet removal of aerosols by the monsoon rain. Contributions of different aerosol chemical species to the total dust, simulated using Goddard Chemistry Aerosol Radiation and Transport model over the ARFINET stations, showed an increasing trend for all the anthropogenic components and a decreasing trend for dust, consistent with the inference deduced from trend in Angstrom exponent.


Journal of Earth System Science | 2015

Performance of WRF-Chem over Indian region: Comparison with measurements

Gaurav Govardhan; Ravi S. Nanjundiah; S. K. Satheesh; K Krishnamoorthy; V R Kotamarthi

The aerosol mass concentrations over several Indian regions have been simulated using the online chemistry transport model, WRF-Chem, for two distinct seasons of 2011, representing the pre-monsoon (May) and post-monsoon (October) periods during the Indo–US joint experiment ‘Ganges Valley Aerosol Experiment (GVAX)’. The simulated values were compared with concurrent measurements. It is found that the model systematically underestimates near-surface BC mass concentrations as well as columnar Aerosol Optical Depths (AODs) from the measurements. Examining this in the light of the model-simulated meteorological parameters, we notice the model overestimates both planetary boundary layer height (PBLH) and surface wind speeds, leading to deeper mixing and dispersion and hence lower surface concentrations of aerosols. Shortcoming in simulating rainfall pattern also has an impact through the scavenging effect. It also appears that the columnar AODs are influenced by the unrealistic emission scenarios in the model. Comparison with vertical profiles of BC obtained from aircraft-based measurements also shows a systematic underestimation by the model at all levels. It is seen that concentration of other aerosols, viz., dust and sea-salt are closely linked with meteorological conditions prevailing over the region. Dust is higher during pre-monsoon periods due to the prevalence of north-westerly winds that advect dust from deserts of west Asia into the Indo-Gangetic plain. Winds and rainfall influence sea-salt concentrations. Thus, the unrealistic simulation of wind and rainfall leads to model simulated dust and sea-salt also to deviate from the real values; which together with BC also causes underperformance of the model with regard to columnar AOD. It appears that for better simulations of aerosols over Indian region, the model needs an improvement in the simulation of the meteorology.


Journal of Geophysical Research | 2015

Optical properties and CCN activity of aerosols in a high‐altitude Himalayan environment: Results from RAWEX‐GVAX

Mukunda M. Gogoi; S. Suresh Babu; V. Jayachandran; K. Krishna Moorthy; S. K. Satheesh; Manish Naja; V. R. Kotamarthi

The seasonality and mutual dependence of aerosol optical properties and cloud condensation nuclei (CCN) activity under varying meteorological conditions at the high-altitude Nainital site (2km) in the Indo-Gangetic Plains were examined using nearly year-round measurements (June 2011 to March 2012) at the Atmospheric Radiation Measurement mobile facility as part of the Regional Aerosol Warming Experiment-Ganges Valley Aerosol Experiment of the Indian Space Research Organization and the U.S. Department of Energy. The results from collocated measurements provided enhanced aerosol scattering and absorption coefficients, CCN concentrations, and total condensation nuclei concentrations during the dry autumn and winter months. The CCN concentration (at a supersaturation of 0.46) was higher during the periods of high aerosol absorption (single scattering albedo (SSA) 0.85), indicating that the aerosol composition seasonally changes and influences the CCN activity. The monthly mean CCN activation ratio (at a supersaturation of 0.46) was highest (>0.7) in late autumn (November); this finding is attributed to the contribution of biomass-burning aerosols to CCN formation at high supersaturation conditions.


international conference on computer science and network technology | 2011

Skull removal of noisy magnetic resonance brain images using Contourlet transform and morphological operations

S. K. Satheesh; R.T. Santosh Kumar; K. Prasad; K. Jitender Reddy

Efficient segmentation of noisy Magnetic Resonance ( MR) brain images is a challenging task, as pre and post surgery decisions are required to make accurately in achieving better medical practices while treating brain disorders. This paper presents an automatic segmentation technique to remove non brain tissue (skull, fat, skin, muscle) of noisy MR brain images and to extract brain tissue (cortex and cerebellum). Here, Contourlet transform is applied to denoise a noisy MR brain image and threshold based morphological operations are applied to extract brain region on denoised images. Hence a comparative study is developed on skull removed MR brain images with and without denoising based on similarity index and segmentation error. The experimental results prove that the proposed method yields consistent results irrespective of noise levels.


Journal of Geophysical Research | 2016

Assessment of DSDs of GPM‐DPR with ground‐based disdrometer at seasonal scale over Gadanki, India

Basivi Radhakrishna; S. K. Satheesh; T. Narayana Rao; K. Saikranthi; K. Sunilkumar

Characteristics of raindrop size distribution (DSD) obtained by Global Precipitation Measurement (GPM) mission dual-frequency precipitation radar (DPR) are assessed over Gadanki region during southwest (SW) and northeast (NE) monsoon seasons utilizing 2years (2014-2015) of DSD measurements by an impact-type disdrometer. The mass weighted mean diameter (D-m in mm) and normalized DSD scaling parameter for concentration (N-w in mm(-1)m(-3)) show pronounced seasonal differences at low to medium rain rates in the disdrometer data, in accordance with the previous studies, but not in the GPM-DPR data. Similar features are observed every year in disdrometer measurements and over different spatial domains in GPM-DPR measurements, indicating that sampling mismatch errors are insignificant. The reasons for the absence of seasonal differences in DSDs derived from GPM-DPR are examined by simulating the reflectivities at Ku- and Ka-bands, utilizing the disdrometer measurements and T-matrix scattering indices. Results suggest that the D-m and N-w retrieved from single-frequency and dual-frequency algorithms utilizing the disdrometer data also show seasonal differences in accordance with the observations with under and overestimation of D-m and N-w, respectively. When compared with the disdrometer, the D-m values retrieved from the GPM-DPR (official products) are severely underestimated at high rain rates (R>8mmh(-1)) during the SW monsoon season. On the other hand, during low rain rates (R<8mmh(-1)), a slight underestimation (overestimation) of D-m is seen during the SW (NE) monsoon. The mean N-w values retrieved from GPM-DPR agree poorly with disdrometer data during both the monsoon seasons.


Journal of Earth System Science | 2014

Sensitivity of meteorological input and soil properties in simulating aerosols (dust, PM10, and BC) using CHIMERE chemistry transport model

Nishi Srivastava; S. K. Satheesh; Nadège Blond

The objective of this study is to evaluate the ability of a European chemistry transport model, ‘CHIMERE’ driven by the US meteorological model MM5, in simulating aerosol concentrations [dust, PM10 and black carbon (BC)] over the Indian region. An evaluation of a meteorological event (dust storm); impact of change in soil related parameters and meteorological input grid resolution on these aerosol concentrations has been performed. Dust storm simulation over Indo-Gangetic basin indicates ability of the model to capture dust storm events. Measured (AERONET data) and simulated parameters such as aerosol optical depth (AOD) and Angstrom exponent are used to evaluate the performance of the model to capture the dust storm event. A sensitivity study is performed to investigate the impact of change in soil characteristics (thickness of the soil layer in contact with air, volumetric water, and air content of the soil) and meteorological input grid resolution on the aerosol (dust, PM10, BC) distribution. Results show that soil parameters and meteorological input grid resolution have an important impact on spatial distribution of aerosol (dust, PM10, BC) concentrations.


Remote Sensing Letters | 2011

Anthropogenic aerosol fraction over Afro-Asian regions inferred using Kalpana-I and MISR data

N. Srivastava; S. K. Satheesh; C. B. S. Dutt; K. S. Jagannath

Mineral dust constitutes the single largest contributor of natural aerosols over continents. The first step towards separating natural aerosol radiative impact from its anthropogenic counterparts over continents is to gather information on dust aerosols. The infrared (IR) radiance (10.5–12.5 μm) acquired from the Kalpana-I satellite (∼8-km resolution) was used to retrieve regional characteristics of dust aerosols over the Afro-Asian region during the winter of 2004, coinciding with a national aerosol campaign. Here, we used aerosol-induced IR radiance depression as an index of dust load. The regional distribution of dust over various arid and semi-arid regions of India and adjacent continents has been estimated, and these data in conjunction with regional maps of column aerosol optical depth (AOD) are used to infer anthropogenic aerosol fraction. Surprisingly, even over desert locations in India and Saudi Arabia, the anthropogenic fraction was relatively high (∼0.3 to 0.4) and the regionally averaged anthropogenic fraction over India was 0.62 ± 0.06.


Archive | 2017

Variability of Atmospheric Aerosols Over India

S. K. Satheesh; S. Suresh Babu; B. Padmakumari; G. Pandithurai; V.K. Soni

Atmospheric aerosols play a significant role in climate change due to their ability to scatter and absorb the incoming and outgoing radiation (direct effect). In addition to this, aerosols can also impact climate through modifying cloud properties, such as droplet size distribution and cloud lifetime, a process known as “indirect effect.” Recent studies using long-term data on aerosols (>25 years in some locations) obtained from the ARFINET have revealed a statistically significant seasonally dependent increasing trend. Comparison with measurements taken about 50 years ago indicates the phenomenal nature of the increase in aerosol loading. The rate of increase is high during December to March (dry months) over the entire region. However, the trends are incoherent during April to May (pre-monsoon) and June to September (summer monsoon period). The characteristic features of the spectral variation in aerosol optical depth (AOD) clearly demonstrate the impact of anthropogenic activities on the increasing trend in aerosol loading. Data from a remote coastal location in the southern peninsula (Thiruvananthapuram), on the concentration of BC, normally considered as a tracer for human impact, show a decreasing trend of ~250 ng m−3 per year. This is particularly perceptible after 2004. CAIPEEX data reveal that during the monsoon season, aerosol number concentration showed strong vertical gradient with a transition between the boundary layer and free troposphere.


Optics Letters | 2017

Dependence of atmospheric refractive index structure parameter (Cn2) on the residence time and vertical distribution of aerosols

N. Anand; S. K. Satheesh; K. Krishna Moorthy

Effects of absorbing atmospheric aerosols in modulating the tropospheric refractive index structure parameter (Cn2) are estimated using high resolution radiosonde and multi-satellite data along with a radiative transfer model. We report the influence of variations in residence time and vertical distribution of aerosols in modulating Cn2 and why the aerosol induced atmospheric heating needs to be considered while estimating a free space optical communication link budget. The results show that performance of the link is seriously affected if large concentrations of absorbing aerosols reside for a long time in the atmospheric path.

Collaboration


Dive into the S. K. Satheesh's collaboration.

Top Co-Authors

Avatar

K. Krishna Moorthy

Indian Space Research Organisation

View shared research outputs
Top Co-Authors

Avatar

S. Suresh Babu

Vikram Sarabhai Space Centre

View shared research outputs
Top Co-Authors

Avatar

Vijayakumar S. Nair

Vikram Sarabhai Space Centre

View shared research outputs
Top Co-Authors

Avatar

Manish Naja

Aryabhatta Research Institute of Observational Sciences

View shared research outputs
Top Co-Authors

Avatar

V. R. Kotamarthi

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nadège Blond

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Gaurav Govardhan

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Mukunda M. Gogoi

Vikram Sarabhai Space Centre

View shared research outputs
Top Co-Authors

Avatar

Basivi Radhakrishna

National Atmospheric Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. Srinivasan

Indian Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge