Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Kuschel is active.

Publication


Featured researches published by S. Kuschel.


Physical Review X | 2018

Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam

J. M. Cole; Keegan Behm; E. Gerstmayr; Tom Blackburn; Jonathan Wood; C. D. Baird; Matthew J. Duff; Christopher Harvey; Antony Ilderton; A. S. Joglekar; K. Krushelnick; S. Kuschel; Mattias Marklund; P. McKenna; C. D. Murphy; K. Poder; C. P. Ridgers; G. M. Samarin; Gianluca Sarri; D. R. Symes; A. G. R. Thomas; J. Warwick; M. Zepf; Z. Najmudin; S. P. D. Mangles

The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, todays lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (epsilon > 500 MeV) with an intense laser pulse (a(0) > 10). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (gamma rays), consistent with a quantum description of radiation reaction. The generated gamma rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy epsilon(crit) > 30 MeV.


Nature Communications | 2016

Picosecond metrology of laser-driven proton bursts

B. Dromey; M. Coughlan; Lovisa Senje; Michael A Taylor; S. Kuschel; B Villagomez-Bernabe; R. Stefanuik; G. Nersisyan; Lorenzo Stella; Jorge Kohanoff; M. Borghesi; F Currell; David Riley; D. Jung; Claes-Göran Wahlström; Ciaran Lewis; Matthew Zepf

Tracking primary radiation-induced processes in matter requires ultrafast sources and high precision timing. While compact laser-driven ion accelerators are seeding the development of novel high instantaneous flux applications, combining the ultrashort ion and laser pulse durations with their inherent synchronicity to trace the real-time evolution of initial damage events has yet to be realized. Here we report on the absolute measurement of proton bursts as short as 3.5±0.7 ps from laser solid target interactions for this purpose. Our results verify that laser-driven ion acceleration can deliver interaction times over a factor of hundred shorter than those of state-of-the-art accelerators optimized for high instantaneous flux. Furthermore, these observations draw ion interaction physics into the field of ultrafast science, opening the opportunity for quantitative comparison with both numerical modelling and the adjacent fields of ultrafast electron and photon interactions in matter.


Review of Scientific Instruments | 2013

Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources

Silvio Fuchs; Christian Rödel; Manuel Krebs; Steffen Hädrich; J. Bierbach; A. E. Paz; S. Kuschel; Martin Wünsche; Vinzenz Hilbert; U. Zastrau; E. Förster; Jens Limpert; G. G. Paulus

We report on the absolute sensitivity calibration of an extreme ultraviolet (XUV) spectrometer system that is frequently employed to study emission from short-pulse laser experiments. The XUV spectrometer, consisting of a toroidal mirror and a transmission grating, was characterized at a synchrotron source in respect of the ratio of the detected to the incident photon flux at photon energies ranging from 15.5 eV to 99 eV. The absolute calibration allows the determination of the XUV photon number emitted by laser-based XUV sources, e.g., high-harmonic generation from plasma surfaces or in gaseous media. We have demonstrated high-harmonic generation in gases and plasma surfaces providing 2.3 μW and μJ per harmonic using the respective generation mechanisms.


Physical Review X | 2018

Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser

K. Poder; Matteo Tamburini; Gianluca Sarri; A. Di Piazza; S. Kuschel; C. D. Baird; Keegan Behm; S. Bohlen; J. M. Cole; D. J. Corvan; Matthew J. Duff; E. Gerstmayr; Christoph H. Keitel; K. Krushelnick; S. P. D. Mangles; P. McKenna; C. D. Murphy; Z. Najmudin; C. P. Ridgers; G. M. Samarin; D. R. Symes; A. G. R. Thomas; J. Warwick; M. Zepf

The description of the dynamics of an electron in an external electromagnetic field of arbitrary intensity is one of the most fundamental outstanding problems in electrodynamics. Remarkably, to date, there is no unanimously accepted theoretical solution for ultrahigh intensities and little or no experimental data. The basic challenge is the inclusion of the self-interaction of the electron with the field emitted by the electron itself - the so-called radiation reaction force. We report here on the experimental evidence of strong radiation reaction, in an all-optical experiment, during the propagation of highly relativistic electrons (maximum energy exceeding 2 GeV) through the field of an ultraintense laser (peak intensity of 4×1020 W/cm2). In their own rest frame, the highest-energy electrons experience an electric field as high as one quarter of the critical field of quantum electrodynamics and are seen to lose up to 30% of their kinetic energy during the propagation through the laser field. The experimental data show signatures of quantum effects in the electron dynamics in the external laser field, potentially showing departures from the constant cross field approximation.


Physical Review Letters | 2015

Noncollinear Polarization Gating of Attosecond Pulse Trains in the Relativistic Regime

M. Yeung; J. Bierbach; E. Eckner; S. Rykovanov; S. Kuschel; Alexander Sävert; M. Förster; C. Rödel; G. G. Paulus; S. Cousens; M. Coughlan; B. Dromey; Matthew Zepf

High order harmonics generated at relativistic intensities have long been recognized as a route to the most powerful extreme ultraviolet pulses. Reliably generating isolated attosecond pulses requires gating to only a single dominant optical cycle, but techniques developed for lower power lasers have not been readily transferable. We present a novel method to temporally gate attosecond pulse trains by combining noncollinear and polarization gating. This scheme uses a split beam configuration which allows pulse gating to be implemented at the high beam fluence typical of multi-TW to PW class laser systems. Scalings for the gate width demonstrate that isolated attosecond pulses are possible even for modest pulse durations achievable for existing and planned future ultrashort high-power laser systems. Experimental results demonstrating the spectral effects of temporal gating on harmonic spectra generated by a relativistic laser plasma interaction are shown.


New Journal of Physics | 2012

Thomson backscattering from laser generated, relativistically moving high-density electron layers

Athena E. Paz; S. Kuschel; Christian Rödel; Michael Schnell; Oliver Jäckel; M. C. Kaluza; G. G. Paulus

We show experimentally that extreme ultraviolet radiation is produced when a laser pulse is Thomson backscattered from sheets of relativistic electrons that are formed at the rear surface of a foil irradiated on its front side with a high-intensity laser. An all-optical setup is realized using the Jena titanium:sapphire ten-terawatt laser system with an enhanced amplified spontaneous emission background of 10−12. The main pulse is split into two: one of them accelerates electrons from thin aluminium foil targets to energies of the order of some MeV and the other, counterpropagating probe pulse Thomson-backscatters off these electrons when they exit the target rear side. The process produced photons within a wide spectral range of some tens of eV as a result of the broad electron energy distribution. The highest scattering intensity is observed when the probe pulse arrives at the target rear surface 100 fs after irradiation of the target front side by the pump pulse, corresponding to the maximum flux of hot electrons at the interaction region. These results can provide time-resolved information about the evolution of the rear-surface electron sheath and hence about the dynamics of the electric fields responsible for the acceleration of ions from the rear surface of thin, laser-irradiated foils.


Optics Express | 2011

Creating circularly polarized light with a phase-shifting mirror.

Bastian Aurand; S. Kuschel; Christian Rödel; Martin Heyer; Frank Wunderlich; Oliver Jäckel; Malte C. Kaluza; Gerhard G. Paulus; T. Kuhl

We report on the performance of a system employing a multi-layer coated mirror creating circularly polarized light in a fully reflective setup. With one specially designed mirror we are able to create laser pulses with an ellipticity of more than ε = 98% over the entire spectral bandwidth from initially linearly polarized Titanium:Sapphire femtosecond laser pulses. We tested the homogeneity of the polarization with beam sizes of the order of approximately 10 cm. The damage threshold was determined to be nearly 400 times higher than for a transmissive quartz-wave plate which suggests applications in high intensity laser experiments. Another advantage of the reflective scheme is the absence of nonlinear effects changing the spectrum or the pulse-form and the scalability of coating fabrication to large aperture mirrors.


Optics Express | 2015

Long-term operation of surface high-harmonic generation from relativistic oscillating mirrors using a spooling tape

J. Bierbach; M. Yeung; E. Eckner; Christian Roedel; S. Kuschel; M. Zepf; G. G. Paulus

Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·10(19) W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generation becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.


Review of Scientific Instruments | 2012

Note: A large aperture four-mirror reflective wave-plate for high-intensity short-pulse laser experiments.

Bastian Aurand; Christian Rödel; H. W. Zhao; S. Kuschel; Martin Wünsche; Oliver Jäckel; Martin Heyer; Frank Wunderlich; Malte C. Kaluza; G. G. Paulus; Thomas Kuehl

We report on a four-mirror reflective wave-plate system based on a phase-shifting mirror (PSM) for a continuous variation of elliptical polarization without changing the beam position and direction. The system presented and characterized here can replace a conventional retardation plate providing all advantages of a PSM, such as high damage-threshold, large scalability, and low dispersion. This makes reflective wave-plates an ideal tool for ultra-high power laser applications.


Review of Scientific Instruments | 2014

Diagnostics for studies of novel laser ion acceleration mechanisms

Lovisa Senje; M. Yeung; B. Aurand; S. Kuschel; Christian Rödel; F. Wagner; Kun Li; B. Dromey; V. Bagnoud; Paul Neumayer; Markus Roth; Claes-Göran Wahlström; Matthew Zepf; Thomas Kuehl; D. Jung

Diagnostic for investigating and distinguishing different laser ion acceleration mechanisms has been developed and successfully tested. An ion separation wide angle spectrometer can simultaneously investigate three important aspects of the laser plasma interaction: (1) acquire angularly resolved energy spectra for two ion species, (2) obtain ion energy spectra for multiple species, separated according to their charge to mass ratio, along selected axes, and (3) collect laser radiation reflected from and transmitted through the target and propagating in the same direction as the ion beam. Thus, the presented diagnostic constitutes a highly adaptable tool for accurately studying novel acceleration mechanisms in terms of their angular energy distribution, conversion efficiency, and plasma density evolution.

Collaboration


Dive into the S. Kuschel's collaboration.

Top Co-Authors

Avatar

M. Zepf

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Bierbach

Helmholtz Institute Jena

View shared research outputs
Top Co-Authors

Avatar

M. Yeung

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Dromey

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge