S. L. Kiselev
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. L. Kiselev.
Cell Cycle | 2006
Maria A. Lagarkova; Pavel Y. Volchkov; Anna V. Lyakisheva; Elena S. Philonenko; S. L. Kiselev
Human embryonic stem cells (hESCs) are a promising model for studying mechanisms ofregulation of early development and differentiation. OCT4, NANOG, OCT4-related genes andsome others were recently described to be important in pluripotency maintenance. Lesser isknown about molecular mechanisms involved in their regulation. Apart from genetic regulationof gene expression epigenetic events, particularly methylation, play an important role in earlydevelopment. Using RT-PCR we studied the expression of pluripotency-related genes OCT4,NANOG, DPPA3, and DPPA5 during hESCs differentiation to embryoid bodies. Analysis ofmethylation profiles of promoter or putative regulatory regions of the indicated genesdemonstrated that expression of the pluripotency-maintaining genes correlated with theirmethylation status, whereas methylation of DPPA3 and DPPA5 varied between cell lines. Wepropose that DNA methylation underlies the developmental stage-specific mechanisms ofpluripotency-related genes expression and reactivation and may have an impact ondifferentiation potential of hESC lines.
Cell Cycle | 2008
Maria A. Lagarkova; Pavel Y. Volchkov; Elena S. Philonenko; S. L. Kiselev
Human embryonic stem cells (hESCs) are to be considered as a valuable source for regenerative medicine because of their capacity to differentiate into all cell types. We have developed an efficient culture system to differentiate hECSs into endothelial cells without the formation of embryoid bodies Establishing appropriate culture conditions with a cocktail of growth factors allowed us to differentiate hESCs directly to endothelial primary culture with about 50% efficiency. CD31 immunomagnetic cell sorting was used to purify derived endothelium from the primary culture of hESCs. Isolated endothelial cells expressed immunological markers (vWF, CD105), specific genes (VE-cadherin, KDR, GATA-2, GATA-3, eNOS), and formed cord-like structures on collagen matrix and in Matrigel assay. During differentiation to endothelial lineage promoter regions of the genes involved in specific cell fate determination and homeostasis (GATA-2,-3, and eNOS) underwent intensive hypomethylation which correlated with the gene expression. Overall our data demonstrate that direct differentiation of hESCs leads to endothelial cells that acquire epigenetic patterning similar to the functional endothelial cells of the organism.
Journal of Gene Medicine | 2004
Sergey S. Larin; E. V. Korobko; Olga S. Kustikova; Olga R. Borodulina; Natan T. Raikhlin; Igor P. Brisgalov; Georgii P. Georgiev; S. L. Kiselev
Recent studies indicate that the innate component of immune defense plays an important role in the establishment of antigen‐specific immune response. We have previously isolated a novel mouse gene tag7/PGRP that was shown to be involved in the innate component of the immune system, and its insect homologue is an upstream mediator of Toll signaling in Drosophila.
npj Parkinson's disease | 2016
Staffan Holmqvist; Šárka Lehtonen; Margarita Chumarina; Katja A. Puttonen; Carla Azevedo; O. V. Lebedeva; Marika Ruponen; Minna Oksanen; Mehdi Djelloul; Anna Collin; Stefano Goldwurm; Morten Meyer; Maria A. Lagarkova; S. L. Kiselev; Jari Koistinaho; Laurent Roybon
Induced pluripotent stem cells (iPSCs) are becoming an important source of pre-clinical models for research focusing on neurodegeneration. They offer the possibility for better understanding of common and divergent pathogenic mechanisms of brain diseases. Moreover, iPSCs provide a unique opportunity to develop personalized therapeutic strategies, as well as explore early pathogenic mechanisms, since they rely on the use of patients’ own cells that are otherwise accessible only post-mortem, when neuronal death-related cellular pathways and processes are advanced and adaptive. Neurodegenerative diseases are in majority of unknown cause, but mutations in specific genes can lead to familial forms of these diseases. For example, mutations in the superoxide dismutase 1 gene lead to the motor neuron disease amyotrophic lateral sclerosis (ALS), while mutations in the SNCA gene encoding for alpha-synuclein protein lead to familial Parkinson’s disease (PD). The generations of libraries of familial human ALS iPSC lines have been described, and the iPSCs rapidly became useful models for studying cell autonomous and non-cell autonomous mechanisms of the disease. Here we report the generation of a comprehensive library of iPSC lines of familial PD and an associated synucleinopathy, multiple system atrophy (MSA). In addition, we provide examples of relevant neural cell types these iPSC can be differentiated into, and which could be used to further explore early disease mechanisms. These human cellular models will be a valuable resource for identifying common and divergent mechanisms leading to neurodegeneration in PD and MSA.
In Vitro Cellular & Developmental Biology – Animal | 2010
Maria A. Lagarkova; Artem V. Eremeev; Anatoly V. Svetlakov; Nikolay B. Rubtsov; S. L. Kiselev
A large number of human embryonic stem cell (hESC) lines have been derived worldwide since the first hESC line establishment in 1998. Despite many common characteristics, most important of which is the pluripotency, hESC lines vary significantly in their transcriptional profiles, genetic, and epigenetic state. These differences may arise both from individual genetics of the cell lines and from variations in their handling such as isolation and cultivation. In order to minimize the latter differences, the standardized protocols of cultivation and inter-laboratory comprehensive studies should be performed. In this report, we summarized our experience of derivation and characterization of hESC lines as well as of adaptation of hESCs to novel cultivation protocols. We have successfully derived five hESC lines and characterized them by previously established criteria, including expression of specific markers and the capacity to differentiate both in vitro and in vivo. Four of these lines, namely hESM01–04, were initially derived using mouse fibroblasts as a feeder and currently are maintained under feeder-free, serum-free conditions using mTeSR1 and Matrigel. The fifth line, hESMK05 was derived in feeder-free, serum-free conditions using mTeSR1 and Matrigel. Cell lines retain their pluripotent status and normal karyotype for more than 70 passages and are available to the scientific community.
Cell Cycle | 2008
Maria A. Lagarkova; Pavel Y. Volchkov; Elena S. Philonenko; Kurt Pfannkuche; Maria A. Prokhorovich; Tatyana Zabotina; Juergen Hescheler; S. L. Kiselev
Recently it has been demonstrated that CD30 expression was rather specific for transformed than for normal human ES cells and therefore CD30 maybe suggested as a potential marker for human ES cells bearing chromosomal abnormalities. Using immunohistochemistry and RT-PCR analysis we examined СD30 expression in 10 hESCs lines with normal and abberant karyotypes. All hESC lines expressed CD30 antigen and RNA in undifferentiated state whether cell line beared chromosomal abnormalities or not. In contrast to previous notions our data demonstrate that CD30 could be considered as marker of undifferentiated hESCs without respect to karyotype changes.
Stem Cells and Development | 2012
Yulia Y. Sharovskaya; Elena S. Philonenko; S. L. Kiselev; Maria A. Lagarkova
Gap junctional intercellular communication (GJIC) has been described in embryonic stem cells (ESCs) and various somatic cells. GJIC has been implicated in the regulation of cell proliferation, self-renewal, and differentiation. Recently, a new type of pluripotent stem cells was generated by direct reprogramming of somatic cells. Here, for the first time, we show that during reprogramming events GJIC is re-established upon reaching complete reprogramming. The opposite process of cell differentiation from the pluripotent state leads to the disruption of GJIC between pluripotent and differentiated cell subsets. However, GJIC is subsequently re-established de novo within each differentiated cell type in vitro, forming communication compartments within a histotype. Our results provide the important evidence that reestablisment of functional gap junctions to the level similar to human ESCs is an additional physiological characteristic of somatic cell reprogramming to the pluripotent state and differentiation to the specific cell type.
Bulletin of Experimental Biology and Medicine | 2006
M. A. Lagar’kova; A. V. Lyakisheva; E. S. Filonenko; P. Yu. Volchkov; K. V. Rubtsova; Yu. V. Gerasimov; R. K. Chailakhyan; S. L. Kiselev
Immunophenotype of human bone marrow mesenchymal stem cells was studied after several culturing passages and after cryopreservation. Immunocytochemical analysis showed that bone marrow mesenchymal stem cells acquired homogeneity during in vitro culturing, but initially contained heterogeneous populations.
Molecular Biology | 2003
Kachko Av; V. A. Svyatchenko; V. A. Ternovoi; N. N. Kiselev; Sorokin Av; S. L. Kiselev; Georgii P. Georgiev; S. V. Netesov
Site-directed mutagenesis was used to construct human adenovirus serotype 5 (Ad5) variants defective in E1A or E1B. Mutant Adel3 with deletion from E1A was markedly attenuated in permissive cell cultures regardless of the p53 status, and replicated efficiently only in cells of the complementing 293 line. Mutant Adel2 with deletion from E1B55K infected the 293 line cells and p53-deficient human tumor cells (A431, SW480, HEp2) with efficiencies similar to those of Ad5, whereas its replication in normal p53-positive cells was substantially limited. Thus, Adel2 proved to be capable of selective infection and lysis of p53-deficient human tumor cells in vitro. On intratumor injection, Adel2 dramatically suppressed the growth of human epidermoid carcinoma (A431) in nude mice. Adel2 is thus a promising model for designing therapeutic agents against p53-deficient human tumors.
Biochemistry | 2014
Ilya V. Chestkov; E. A. Khomyakova; E. A. Vasilieva; Maria A. Lagarkova; S. L. Kiselev
Genetic reprogramming by ectopic expression of transcription factor genes induces the pluripotent state in somatic cells. This technology provides an opportunity to establish pluripotent stem cells for each person, as well as to get better understanding of epigenetic mechanisms controlling cell state. Interestingly, some of the molecular processes that accompany somatic cell reprogramming in vitro are also characteristic for tumor manifestation. Thus, similar “molecular barriers” that control the stability of epigenetic state exist for both processes of pluripotency induction and malignant transformation. The reprogramming of tumor cells is interesting in two aspects: first, it will determine the contribution of epigenetic changes in carcinogenesis; second, it gives an approach to evaluate tumor stem cells that are supposed to form the entire cell mass of the tumor. This review discusses the key stages of genetic reprogramming, the similarity and difference between the reprogramming process and malignant transformation.