Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. L. S. Stipp is active.

Publication


Featured researches published by S. L. S. Stipp.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Characterization of Eyjafjallajökull volcanic ash particles and a protocol for rapid risk assessment

Sigurdur R. Gislason; Tue Hassenkam; S. Nedel; N. Bovet; Eydis Salome Eiriksdottir; Helgi A. Alfredsson; C. P. Hem; Zoltan Imre Balogh; K. Dideriksen; Niels Oskarsson; Bergur Sigfússon; Gudrún Larsen; S. L. S. Stipp

On April 14, 2010, when meltwaters from the Eyjafjallajökull glacier mixed with hot magma, an explosive eruption sent unusually fine-grained ash into the jet stream. It quickly dispersed over Europe. Previous airplane encounters with ash resulted in sandblasted windows and particles melted inside jet engines, causing them to fail. Therefore, air traffic was grounded for several days. Concerns also arose about health risks from fallout, because ash can transport acids as well as toxic compounds, such as fluoride, aluminum, and arsenic. Studies on ash are usually made on material collected far from the source, where it could have mixed with other atmospheric particles, or after exposure to water as rain or fog, which would alter surface composition. For this study, a unique set of dry ash samples was collected immediately after the explosive event and compared with fresh ash from a later, more typical eruption. Using nanotechniques, custom-designed for studying natural materials, we explored the physical and chemical nature of the ash to determine if fears about health and safety were justified and we developed a protocol that will serve for assessing risks during a future event. On single particles, we identified the composition of nanometer scale salt coatings and measured the mass of adsorbed salts with picogram resolution. The particles of explosive ash that reached Europe in the jet stream were especially sharp and abrasive over their entire size range, from submillimeter to tens of nanometers. Edges remained sharp even after a couple of weeks of abrasion in stirred water suspensions.


American Mineralogist | 2004

Biological control on calcite crystallization: AFM investigation of coccolith polysaccharide function

Karen Friis Henriksen; S. L. S. Stipp; Jeremy R. Young; M.E. Marsh

Abstract Calcite crystals grown by organisms can be elaborate and enigmatic. One of the best examples is the tiny calcite shields known as coccoliths that are produced by unicellular algae. Coccoliths consist of interlocking single crystals of highly modified morphology, and complex organic molecules called CAPs (coccolith associated polysaccharides) are known to be intimately associated with their formation. Here, we show how a CAP can regulate crystal morphology to enhance precipitation of specific faces, a crucial aspect of the biomineralization process. Using atomic force microscopy (AFM), we investigated the interaction of CAP from the species Emiliania huxleyi with the calcite surface during dissolution, precipitation, and dynamic equilibrium. We were able to see the polysaccharide adsorbed to the surface and observe its impact on mineral behavior. These experiments demonstrate that CAP preferentially interacts with surface sites defined by acute, rather than obtuse, angles and blocks acute sites during dissolution and growth. Therefore, CAP makes the calcite face that is most stable in the pure system, {101̄4}, extend preferentially on the obtuse edges, promoting development of faces with lower angles to c-axis. AFM images of E. huxleyi at micrometer and atomic scales established that this is precisely the type of faces that define the morphology of the coccolith crystals. Therefore, we propose that crystal shape regulation by CAP is a fundamental aspect of coccolith biomineralization, and that preferential growth inhibition by site-specific functional groups is the mechanism causing CAP functionality.


Scientific Reports | 2015

Direct observation of ionic structure at solid-liquid interfaces: a deep look into the Stern Layer

Igor Sîretanu; Daniel Ebeling; Martin Andersson; S. L. S. Stipp; Albert P. Philipse; Martin Cohen Stuart; Dirk van den Ende; Frieder Mugele

The distribution of ions and charge at solid-water interfaces plays an essential role in a wide range of processes in biology, geology and technology. While theoretical models of the solid-electrolyte interface date back to the early 20th century, a detailed picture of the structure of the electric double layer has remained elusive, largely because of experimental techniques have not allowed direct observation of the behaviour of ions, i.e. with subnanometer resolution. We have made use of recent advances in high-resolution Atomic Force Microscopy to reveal, with atomic level precision, the ordered adsorption of the mono- and divalent ions that are common in natural environments to heterogeneous gibbsite/silica surfaces in contact with aqueous electrolytes. Complemented by density functional theory, our experiments produce a detailed picture of the formation of surface phases by templated adsorption of cations, anions and water, stabilized by hydrogen bonding.


Langmuir | 2010

Interaction of Ethanol and Water with the {101̅4} Surface of Calcite

David J. Cooke; Richard J. Gray; K. K. Sand; S. L. S. Stipp; James A. Elliott

Molecular dynamics simulations have been used to model the interaction between ethanol, water, and the {1014} surface of calcite. Our results demonstrate that a single ethanol molecule is able to form two interactions with the mineral surface (both Ca-O and O-H), resulting in a highly ordered, stable adsorption layer. In contrast, a single water molecule can only form one or other of these interactions and is thus less well bound, resulting in a more unstable adsorption layer. Consequently, when competitive adsorption is considered, ethanol dominates the adsorption layer that forms even when the starting configuration consists of a complete monolayer of water at the surface. The computational results are in good agreement with the results from atomic force microscopy experiments where it is observed that a layer of ethanol remains attached to the calcite surface, decreasing its ability to interact with water and for growth at the {1014} surface to occur. This observation, and its corresponding molecular explanation, may give some insight into the ability to control crystal form using mixtures of different organic solvents.


Langmuir | 2010

Binding of ethanol on calcite: the role of the OH bond and its relevance to biomineralization.

K. K. Sand; M. Yang; Emil Makovicky; David J. Cooke; Tue Hassenkam; K. Bechgaard; S. L. S. Stipp

The interaction of OH-containing compounds with calcite, CaCO(3), such as is required for the processes that control biomineralization, has been investigated in a low-water solution. We used ethanol (EtOH) as a simple, model, OH-containing organic compound, and observed the strength of its adsorption on calcite relative to OH from water and the consequences of the differences in interaction on crystal growth and dissolution. A combination of atomic force microscopy (AFM) and molecular dynamics (MD) simulations showed that EtOH attachment on calcite is stronger than HOH binding and that the first adsorbed layer of ethanol is highly ordered. The strong ordering of the ethanol molecules has important implications for mineral growth and dissolution because it produces a hydrophobic layer. Ethanol ordering is disturbed along steps and at defect sites, providing a bridge from the bulk solution to the surface. The strong influence of calcite in structuring ethanol extends further into the liquid than expected from electrical double-layer theory. This suggests that in fluids where water activity is low, such as in biological systems optimized for biomineralization, organic molecules can control ion transport to and from the mineral surface, confining it to specific locations, thus providing the organism with control for biomineral morphology.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Probing the intrinsically oil-wet surfaces of pores in North Sea chalk at subpore resolution

Tue Hassenkam; L.L. Skovbjerg; S. L. S. Stipp

Pore surface properties control oil recovery. This is especially true for chalk reservoirs, where pores are particularly small. Wettability, the tendency for a surface to cover itself with fluid, is traditionally defined by the angle a droplet makes with a surface, but this macroscopic definition is meaningless when the particles are smaller than even the smallest droplet. Understanding surface wetting, at the pore scale, will provide clues for more effective oil recovery. We used a special mode of atomic force microscopy and a hydrophobic tip to collect matrices of 10,000 force curves over 5- × 5-μm2 areas on internal pore surfaces and constructed maps of topography, adhesion, and elasticity. We investigated chalk samples from a water-bearing formation in the Danish North Sea oil fields that had never seen oil. Wettability and elasticity were inhomogeneous over scales of 10s of nanometers, smaller than individual chalk particles. Some areas were soft and hydrophobic, whereas others showed no correlation between hardness and adhesion. We conclude that the macroscopic parameter, “wetting,” averages the nanoscopic behavior along fluid pathways, and “mixed-wet” samples have patches with vastly different properties. Development of reservoir hydrophobicity has been attributed to infiltrating oil, but these new results prove that wettability and elasticity are inherent properties of chalk. Their variability, even on single particles, must result from material originally present during sedimentation or material sorbed from the pore fluid some time later.


Geochimica et Cosmochimica Acta | 2001

The behavior of Ni2+ on calcite surfaces

U Hoffmann; S. L. S. Stipp

Transport of Ni2+ in the geosphere plays a role in the formation of ore deposits as well as in the dispersion of contaminants in the environment. Some elements (Cd2+, Zn2+, Na+, K+, and Cl−) are known to diffuse in calcite at the rate of nanometers in months, so questions arose about the ability of Ni2+ to move away from adsorption sites at the surface into the bulk. Nickel incorporation into calcite is limited by its high dehydration enthalpy and by its ligand field hindrance to entering the distorted octahedra of calcite, but evidence exists that calcite can tolerate several percent Ni2+ in the structure. Cleaved samples of Iceland spar were exposed for 1 minute to solutions of 10−3 M and 10−2 M Ni(ClO4)2, the solution was physically removed and the samples were examined using the surface sensitive techniques: X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectroscopy (TOF-SIMS) and Atomic Force Microscopy (AFM). XPS and TOF-SIMS showed that Ni2+ was adsorbed while AFM confirmed that dissolution was taking place. The sample was stored in air and relative surface concentration and physical morphology were monitored for 2 years. Trends in the chemical data suggested statistically significant loss of surface Ni2+ with time, but the decrease was very close to the limits for significance. AFM images demonstrated that surface topography of the Ni-exposed samples is modified by spontaneous recrystalization in the water layer adsorbed from air in exactly the same way that clean calcite surfaces typically rearrange. This process could bury a small amount of Ni2+ in the bulk, explaining the very weak loss. Limited burial of Ni2+ within the near-surface could renew calcite adsorption sites, thus increasing uptake capacity. Evidence indicates that surface recrystalization occurs even in very dry environments ( 10,000 years) such as would be relevant for geological processes and for long-term radioactive waste disposal. However, incorporation by burial would have negligible effect on the amount of Ni2+ removed from groundwater by adsorption, in systems where the transport times are short (<100 years) such as for drinking water supplies from calcite-bearing porous media.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Tracking single coccolith dissolution with picogram resolution and implications for CO2 sequestration and ocean acidification

Tue Hassenkam; A. Johnsson; K. Bechgaard; S. L. S. Stipp

Coccoliths are micrometer scale shields made from 20 to 60 individual calcite (CaCO3) crystals that are produced by some species of algae. Currently, coccoliths serve as an important sink in the global carbon cycle, but decreasing ocean pH challenges their stability. Chalk deposits, the fossil remains of ancient algae, have remained remarkably unchanged by diagenesis, the process that converts sediment to rock. Even after 60 million years, the fossil coccolith crystals are still tiny (< 1 μm), compared with inorganically produced calcite, where one day old crystals can be 10 times larger, which raises the question if the biogenic nature of coccolith calcite gives it different properties than inorganic calcite? And if so, can these properties protect coccoliths in CO2 challenged oceans? Here we describe a new method for tracking dissolution of individual specimens, at picogram (10-12 g) resolution. The results show that the behavior of modern and fossil coccoliths is similar and both are more stable than inorganic calcite. Organic material associated with the biogenic calcite provides the explanation. However, ancient and modern coccoliths, that resist dissolution in Ca-free artificial seawater at pH > 8, all dissolve when pH is 7.8 or lower. Ocean pH is predicted to fall below 7.8 by the year 2100, in response to rising CO2 levels. Our results imply that at these conditions the advantages offered by the biogenic nature of calcite will disappear putting coccoliths on algae and in the calcareous bottom sediments at risk.


Langmuir | 2013

Energies of the Adsorption of Functional Groups to Calcium Carbonate Polymorphs: The Importance of −OH and −COOH Groups

Denis V. Okhrimenko; J. Nissenbaum; Martin Andersson; M. H. M. Olsson; S. L. S. Stipp

The adsorption behavior of calcium carbonate is an important factor in many processes in nature, industry, and biological systems. We determined and compared the adsorption energies for a series of small molecules of different sizes and polarities (i.e., water, several alcohols, and acetic acid) on three synthetic CaCO3 polymorphs (calcite, aragonite, and vaterite). We measured isosteric heats of adsorption from vapor adsorption isotherms for 273 < T < 293 K, and we used XRD and SEM to confirm that samples did not change phase during the experiments. Density functional calculations and molecular dynamics simulations complemented the experimental results and aided interpretation. Alcohols with molecular mass greater than that of methanol bind more strongly to the calcium carbonate polymorphs than water and acetic acid. The adsorption energies for the alcohols are typical of chemisorption and indicate alcohol displacement of water from calcium carbonate surfaces. This explains why organisms favor biomolecules that contain alcohol functional groups (-OH) to control which polymorph they use, the crystal face and orientation, and the particle shape and size in biomineralization processes. This new insight is also very useful in understanding organic molecule adsorption mechanisms in soils, sediments, and rocks, which is important for predicting the behavior of mineral-fluid interactions when the challenge is to remediate contaminated groundwater aquifers or to produce oil and gas from reservoirs.


Langmuir | 2012

Molecular ordering of ethanol at the calcite surface.

I. S. Pasarín; M. Yang; N. Bovet; Magni Glyvradal; Martin Meedom Nielsen; Jakob Bohr; Robert Feidenhans'l; S. L. S. Stipp

To produce biominerals, such as shells, bones, and teeth, living beings create organic compounds that control the growth of the solid phase. Investigating the atomic scale behavior of individual functional groups at the mineral-fluid interface provides fundamental information that is useful for constructing accurate predictive models for natural systems. Previous investigations of the activity of coccolith-associated polysaccharides (CAP) on calcite, using atomic force microscopy (AFM) [Henriksen, K., Young, J. R., Bown, P. R., and Stipp, S. L. S. Palentology 2004, 43 (Part 3), 725-743] and molecular dynamics (MD) modeling [Yang, M., Stipp, S. L. S., and Harding, J. H. Cryst. Growth Des. 2008, 8 (11), 4066-4074], have suggested that OH functional groups control polysaccharide attachment. The purpose of this work was to characterize, using X-ray reflectivity (XR) combined with molecular dynamics (MD) simulations, the structuring on calcite of a layer of the simplest carbon chain molecule that contains an OH group, ethanol (CH(3)-CH(2)-OH). We found evidence that EtOH forms a highly ordered structure at the calcite surface, where the first layer molecules bond with calcite. The ethanol molecules stand up perpendicularly at the interface or nearly so. As a consequence, the fatty, CH(3) ends form a new surface, about 6 Å from the termination of the bulk calcite, and beyond that, there is a thin gap where ethanol density is low. Following is a more disordered layer that is two to three ethanol molecules thick, about 14 Å, where density more resembles that of bulk liquid ethanol. The good agreement between theory and experiment gives confidence that a theoretical approach can offer information about behavior in more complex systems.

Collaboration


Dive into the S. L. S. Stipp's collaboration.

Top Co-Authors

Avatar

N. Bovet

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Tue Hassenkam

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Dideriksen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

K. N. Dalby

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

K. K. Sand

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Bechgaard

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge