S. Leary
Murdoch University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Leary.
OncoImmunology | 2015
Jenette Creaney; Shaokang Ma; Sophie Sneddon; Michelle Tourigny; Ian Dick; Justine S. Leon; Andrea Khong; Scott Fisher; Richard A. Lake; Willem Joost Lesterhuis; Anna K. Nowak; S. Leary; M. Watson; Bruce W. S. Robinson
A key to improving cancer immunotherapy will be the identification of tumor-specific “neoantigens” that arise from mutations and augment the resultant host immune response. In this study we identified single nucleotide variants (SNVs) by RNA sequencing of asbestos-induced murine mesothelioma cell lines AB1 and AB1-HA. Using the NetMHCpan 2.8 algorithm, the theoretical binding affinity of predicted peptides arising from high-confidence, exonic, non-synonymous SNVs was determined for the BALB/c strain. The immunoreactivity to 20 candidate mutation-carrying peptides of increased affinity and the corresponding wild-type peptides was determined using interferon-γ ELISPOT assays and lymphoid organs of non-manipulated tumor-bearing mice. A strong endogenous immune response was demonstrated to one of the candidate neoantigens, Uqcrc2; this response was detected in the draining lymph node and spleen. Antigen reactive cells were not detected in non-tumor bearing mice. The magnitude of the response to the Uqcrc2 neoantigen was similar to that of the strong influenza hemagglutinin antigen, a model tumor neoantigen. This work confirms that the approach of RNAseq plus peptide prediction and ELISPOT testing is sufficient to identify natural tumor neoantigens.
Retrovirology | 2017
Jori Symons; A. Chopra; Eva Malatinkova; Ward De Spiegelaere; S. Leary; D. Cooper; Chike O. Abana; Ajantha Rhodes; Simin D. Rezaei; Linos Vandekerckhove; S. Mallal; Sharon R. Lewin; Paul U. Cameron
BackgroundAssessing the location and frequency of HIV integration sites in latently infected cells can potentially inform our understanding of how HIV persists during combination antiretroviral therapy. We developed a novel high throughput sequencing method to evaluate HIV integration sites in latently infected cell lines to determine whether there was virus replication or clonal expansion in these cell lines observed as multiple integration events at the same position.ResultsWe modified a previously reported method using random DNA shearing and PCR to allow for high throughput robotic processing to identify the site and frequency of HIV integration in latently infected cell lines. Latently infected cell lines infected with intact virus demonstrated multiple distinct HIV integration sites (28 different sites in U1, 110 in ACH-2 and 117 in J1.1 per 150,000 cells). In contrast, cell lines infected with replication-incompetent viruses (J-Lat cells) demonstrated single integration sites. Following in vitro passaging of the ACH-2 cell line, we observed a significant increase in the frequency of unique HIV integration sites and there were multiple mutations and large deletions in the proviral DNA. When the ACH-2 cell line was cultured with the integrase inhibitor raltegravir, there was a significant decrease in the number of unique HIV integration sites and a transient increase in the frequency of 2-LTR circles consistent with virus replication in these cells.ConclusionCell lines latently infected with intact HIV demonstrated multiple unique HIV integration sites indicating that these cell lines are not clonal and in the ACH-2 cell line there was evidence of low level virus replication. These findings have implications for the use of latently infected cell lines as models of HIV latency and for the use of these cells as standards.
PLOS ONE | 2016
M. Tschochner; S. Leary; D. Cooper; K. Strautins; A. Chopra; Hayley Clark; Linda Choo; David S. Dunn; I. James; William M. Carroll; Allan G. Kermode; D. Nolan
Background Epstein-Barr virus (EBV) infection represents a major environmental risk factor for multiple sclerosis (MS), with evidence of selective expansion of Epstein-Barr Nuclear Antigen-1 (EBNA1)-specific CD4+ T cells that cross-recognize MS-associated myelin antigens in MS patients. HLA-DRB1*15-restricted antigen presentation also appears to determine susceptibility given its role as a dominant risk allele. In this study, we have utilised standard and next-generation sequencing techniques to investigate EBNA-1 sequence variation and its relationship to HLA-DR15 binding affinity, as well as examining potential cross-reactive immune targets within the central nervous system proteome. Methods Sanger sequencing was performed on DNA isolated from peripheral blood samples from 73 Western Australian MS cases, without requirement for primary culture, with additional FLX 454 Roche sequencing in 23 samples to identify low-frequency variants. Patient-derived viral sequences were used to predict HLA-DRB1*1501 epitopes (NetMHCII, NetMHCIIpan) and candidates were evaluated for cross recognition with human brain proteins. Results EBNA-1 sequence variation was limited, with no evidence of multiple viral strains and only low levels of variation identified by FLX technology (8.3% nucleotide positions at a 1% cut-off). In silico epitope mapping revealed two known HLA-DRB1*1501-restricted epitopes (‘AEG’: aa 481–496 and ‘MVF’: aa 562–577), and two putative epitopes between positions 502–543. We identified potential cross-reactive targets involving a number of major myelin antigens including experimentally confirmed HLA-DRB1*15-restricted epitopes as well as novel candidate antigens within myelin and paranodal assembly proteins that may be relevant to MS pathogenesis. Conclusions This study demonstrates the feasibility of obtaining autologous EBNA-1 sequences directly from buffy coat samples, and confirms divergence of these sequences from standard laboratory strains. This approach has identified a number of immunogenic regions of EBNA-1 as well as known and novel targets for autoreactive HLA-DRB1*15-restricted T cells within the central nervous system that could arise as a result of cross-reactivity with EBNA-1-specific immune responses.
Gut | 2018
Jennifer M. Noto; A. Chopra; John T Loh; Judith Romero-Gallo; M. Blanca Piazuelo; M. Watson; S. Leary; Amber C Beckett; Keith T. Wilson; Timothy L. Cover; S. Mallal; Dawn A. Israel; Richard M. Peek
Objective Helicobacter pylori is the strongest risk factor for gastric cancer; however, the majority of infected individuals do not develop disease. Pathological outcomes are mediated by complex interactions among bacterial, host and environmental constituents, and two dietary factors linked with gastric cancer risk are iron deficiency and high salt. We hypothesised that prolonged adaptation of H. pylori to in vivo carcinogenic microenvironments results in genetic modification important for disease. Design Whole genome sequencing of genetically related H. pylori strains that differ in virulence and targeted H. pylori sequencing following prolonged exposure of bacteria to in vitro carcinogenic conditions were performed. Results A total of 180 unique single nucleotide polymorphisms (SNPs) were identified among the collective genomes when compared with a reference H. pylori genome. Importantly, common SNPs were identified in isolates harvested from iron-depleted and high salt carcinogenic microenvironments, including an SNP within fur (FurR88H). To investigate the direct role of low iron and/or high salt, H. pylori was continuously cultured in vitro under low iron or high salt conditions to assess fur genetic variation. Exposure to low iron or high salt selected for the FurR88H variant after only 5 days. To extend these results, fur was sequenced in 339 clinical H. pylori strains. Among the isolates examined, 17% (40/232) of strains isolated from patients with premalignant lesions harboured the FurR88H variant, compared with only 6% (6/107) of strains from patients with non-atrophic gastritis alone (p=0.0034). Conclusion These results indicate that specific genetic variation arises within H. pylori strains during in vivo adaptation to conditions conducive for gastric carcinogenesis.
PeerJ | 2018
Amber C. Beckett; John T. Loh; A. Chopra; S. Leary; Aung Soe Lin; Wyatt J. McDonnell; Beverly R. E. A. Dixon; Jennifer M. Noto; Dawn A. Israel; Richard M. Peek; S. Mallal; Holly M. Scott Algood; Timothy L. Cover
Helicobacter pylori requires genetic agility to infect new hosts and establish long-term colonization of changing gastric environments. In this study, we analyzed H. pylori genetic adaptation in the Mongolian gerbil model. This model is of particular interest because H. pylori-infected gerbils develop a high level of gastric inflammation and often develop gastric adenocarcinoma or gastric ulceration. We analyzed the whole genome sequences of H. pylori strains cultured from experimentally infected gerbils, in comparison to the genome sequence of the input strain. The mean annualized single nucleotide polymorphism (SNP) rate per site was 1.5e−5, which is similar to the rates detected previously in H. pylori-infected humans. Many of the mutations occurred within or upstream of genes associated with iron-related functions (fur, tonB1, fecA2, fecA3, and frpB3) or encoding outer membrane proteins (alpA, oipA, fecA2, fecA3, frpB3 and cagY). Most of the SNPs within coding regions (86%) were non-synonymous mutations. Several deletion or insertion mutations led to disruption of open reading frames, suggesting that the corresponding gene products are not required or are deleterious during chronic H. pylori colonization of the gerbil stomach. Five variants (three SNPs and two deletions) were detected in isolates from multiple animals, which suggests that these mutations conferred a selective advantage. One of the mutations (FurR88H) detected in isolates from multiple animals was previously shown to confer increased resistance to oxidative stress, and we now show that this SNP also confers a survival advantage when H. pylori is co-cultured with neutrophils. Collectively, these analyses allow the identification of mutations that are positively selected during H. pylori colonization of the gerbil model.
Human Immunology | 2018
Eugene Moore; Alba Grifoni; Daniela Weiskopf; Véronique Schulten; Cecilia S. Lindestam Arlehamn; Michael A. Angelo; John Pham; S. Leary; John Sidney; David H. Broide; April Frazier; E. Phillips; S. Mallal; Steven J. Mack; Alessandro Sette
DNA sequence-based typing at the HLA-A, -B, -C, -DPB1, -DQA1, -DQB1, and -DRB1 loci was performed on 496 healthy adult donors from San Diego, California, to characterize allele frequencies in support of studies of T cell responses to common allergens. Deviations from Hardy Weinberg proportions were detected at each locus except A and C. Several alleles were found in more than 15% of individuals, including the class II alleles DPB1∗02:01, DPB1∗04:01, DQA1∗01:02, DQA1∗05:01, DQB1∗03:01, and the class I allele A∗02:01. Genotype data will be available in the Allele Frequencies Net Database (AFND 3562).
Viral Immunology | 2017
S. Merani; Michaela Lucas; Pooja Deshpande; K. Pfafferott; A. Chopra; D. Cooper; S. Leary; Fabio Luciani; Silvana Gaudieri
Host hepatitis C virus (HCV)-specific T cell responses and the ability of the virus to escape this response are important correlates of infection outcome. Understanding this host-viral interplay has been difficult given the often asymptomatic nature of acute HCV infection. We studied a recent transmission case to determine whether adapted viral strains can be transmitted and influence the recipients anti-HCV T cell response. The diversity of viral populations was examined using next-generation sequencing, and HCV-specific T cell interferon (IFN)-γ responses were assessed using a peptide panel representing the autologous viruses. HCV-specific T cell responses in the source were directed against peptides that did not match the dominant autologous virus but rather low-frequency variants, implying existing viral adaptation in the source strain. Most HCV T cell epitopes that elicited an IFN-γ response in the source did not in the recipient, despite the pair sharing human leukocyte antigen alleles that govern antigen presentation and similar autologous viruses. Intrahost HCV variation in the recipient fell within predicted T cell epitopes, suggesting alternative targets of the immune response. These data suggest that transmission of adapted viral species can direct the hosts HCV-specific immune response profile during acute infection.
Retrovirology | 2017
Jori Symons; A. Chopra; Eva Malatinkova; Ward De Spiegelaere; S. Leary; D. Cooper; Chike O. Abana; Ajantha Rhodes; Simin D. Rezaei; Linos Vandekerckhove; S. Mallal; Sharon R. Lewin; Paul U. Cameron
In the original publication the spelling of one author name was incorrect. The correct version: Eva Malatinkova.
Human Immunology | 2017
Cecilia S. Lindestam Arlehamn; Richard Copin; S. Leary; Steven J. Mack; E. Phillips; S. Mallal; Alessandro Sette; Gretta Blatner; Heather Siefers; Joel D. Ernst
One hundred healthy infants enrolled as controls in a tuberculosis vaccine study in Nyanza Province, Kenya provided anonymized samples for DNA sequence-based typing at the HLA-A, -B, -C, -DPB1, -DQA1, -DQB1, -DRB1, and -DRB3/4/5 loci. The purpose of the study was to characterize allele frequencies in the local population, to support studies of T cell immunity against pathogens, including Mycobacterium tuberculosis. There are no detectable deviations from Hardy Weinberg proportions for the HLA-B, -C, -DRB1, -DPB1, -DQA1 and -DQB1 loci. A minor deviation was detected at the HLA-A locus due to an excess of HLA-A*02:02, 29:02, 30:02, and 68:02 homozygotes. The genotype data are available in the Allele Frequencies Net Database under identifier 3393.
Human Immunology | 2017
Alba Grifoni; Daniela Weiskopf; Cecilia S. Lindestam Arlehamn; Michael A. Angelo; S. Leary; John Sidney; April Frazier; E. Phillips; S. Mallal; Steven J. Mack; Rashmi Tippalagama; Suraj Goonewardana; Sunil Premawansa; Gayani Premawansa; Ananda Wijewickrama; Aruna Dharshan De Silva; Alessandro Sette
DNA sequence-based typing at the HLA-A, -B, -C, -DPB1, -DQA1, -DQB1, and -DRB1 loci was performed on 714 healthy adult blood bank donors from Colombo, Sri Lanka, to characterize allele frequencies in support of studies on T cell immunity against pathogens, including Dengue virus. Deviations from Hardy Weinberg proportions were not detected at any locus. Several alleles were found in >30% of individuals, including the class II alleles DPB1 * 04:01, DPB1 * 02:01, DQB1 * 06:01 and DRB1 * 07:01, and the class I alleles A * 33:03 and A * 24:02. Genotype data will be available in the Allele Frequencies Net Database.