Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Lo Meo is active.

Publication


Featured researches published by S. Lo Meo.


Physics in Medicine and Biology | 2012

A free database of radionuclide voxel S values for the dosimetry of nonuniform activity distributions.

Nico Lanconelli; Massimiliano Pacilio; S. Lo Meo; Francesca Botta; A Di Dia; L A Torres Aroche; M A Coca Pérez; Marta Cremonesi

The increasing availability of SPECT/CT devices with advanced technology offers the opportunity for the accurate assessment of the radiation dose to the biological target volume during radionuclide therapy. Voxel dosimetry can be performed employing direct Monte Carlo radiation transport simulations, based on both morphological and functional images of the patient. On the other hand, for voxel dosimetry calculations the voxel S value method can be considered an easier approach than patient-specific Monte Carlo simulations, ensuring a good dosimetric accuracy at least for anatomic regions which are characterized by uniform density tissue. However, this approach has been limited because of the lack of tabulated S values for different voxel dimensions and radionuclides. The aim of this work is to provide a free dataset of values which can be used for voxel dosimetry in targeted radionuclide studies. Seven different radionuclides (89Sr, 90Y, 131I, 153Sm, 177Lu, 186Re, 188Re), and 13 different voxel sizes (2.21, 2.33, 2.4, 3, 3.59, 3.9, 4, 4.42, 4.8, 5, 6, 6.8 and 9.28 mm) are considered. Voxel S values are calculated performing simulations of monochromatic photon and electron sources in two different homogeneous tissues (soft tissue and bone) with DOSXYZnrc code, and weighting the contributions on the basis of the radionuclide emission spectra. The outcomes are validated by comparison with Monte Carlo simulations obtained with other codes (PENELOPE and MCNP4c) performing direct simulation of the radionuclide emission spectra. The differences among the different Monte Carlo codes are of the order of a few per cent when considering the source voxel and the bremsstrahlung tail, whereas the highest differences are observed at a distance close to the maximum continuous slowing down approximation range of electrons. These discrepancies would negligibly affect dosimetric assessments. The dataset of voxel S values can be freely downloaded from the website www.medphys.it.


Medical Physics | 2009

Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations

Massimiliano Pacilio; N. Lanconelli; S. Lo Meo; M. Betti; L. Montani; L A Torres Aroche; M A Coca Pérez

Several updated Monte Carlo (MC) codes are available to perform calculations of voxel S values for radionuclide targeted therapy. The aim of this work is to analyze the differences in the calculations obtained by different MC codes and their impact on absorbed dose evaluations performed by voxel dosimetry. Voxel S values for monoenergetic sources (electrons and photons) and different radionuclides (90Y, 131I, and 188Re) were calculated. Simulations were performed in soft tissue. Three general-purpose MC codes were employed for simulating radiation transport: MCNP4C, EGSnrc, and GEANT4. The data published by the MIRD Committee in Pamphlet No. 17, obtained with the EGS4 MC code, were also included in the comparisons. The impact of the differences (in terms of voxel S values) among the MC codes was also studied by convolution calculations of the absorbed dose in a volume of interest. For uniform activity distribution of a given radionuclide, dose calculations were performed on spherical and elliptical volumes, varying the mass from 1 to 500 g. For simulations with monochromatic sources, differences for self-irradiation voxel S values were mostly confined within 10% for both photons and electrons, but with electron energy less than 500 keV, the voxel S values referred to the first neighbor voxels showed large differences (up to 130%, with respect to EGSnrc) among the updated MC codes. For radionuclide simulations, noticeable differences arose in voxel S values, especially in the bremsstrahlung tails, or when a high contribution from electrons with energy of less than 500 keV is involved. In particular, for 90Y the updated codes showed a remarkable divergence in the bremsstrahlung region (up to about 90% in terms of voxel S values) with respect to the EGS4 code. Further, variations were observed up to about 30%, for small source-target voxel distances, when low-energy electrons cover an important part of the emission spectrum of the radionuclide (in our case, for 131I). For 90Y and 188Re, the differences among the various codes have a negligible impact (within few percents) on convolution calculations of the absorbed dose; thus either one of the MC programs is suitable to produce voxel S values for radionuclide targeted therapy dosimetry. However, if a low-energy beta-emitting radionuclide is considered, these differences can affect also dose depositions at small source-target voxel distances, leading to more conspicuous variations (about 9% for 1311) when calculating the absorbed dose in the volume of interest.


ieee nuclear science symposium | 2008

High spatial and energy resolution gamma imaging based on LaBr3(Ce) continuous crystals

R. Pani; F. Vittorini; R. Pellegrini; P. Bennati; M.N. Cinti; M. Mattioli; R. Scafè; S. Lo Meo; F. L. Navarria; G. Moschini; P. Boccaccio; V. Orsolini Cencelli; F. De Notaristefani

Recently scintillators with very high light yield and photodetectors with high quantum efficiency have been opening a new way to realize gamma cameras with superior performances based on continuous crystals. Pixilated imagers have a spatial resolution limited by pixel size, in contrast with continuous scintillation crystals, where spatial resolution is a statistical function depending on light distribution spread and on generated photoelectrons from scintillation light flash. Continuous LaBr3:Ce crystal, with a light yield almost two times higher than NaI:Tl ones and a lower intrinsic energy resolution, could be the best candidate to carry out a gamma imaging with sub-millimeter spatial resolution and very good energy resolution. Unfortunately standard Anger algorithm produces an intrinsic position non-linearity affecting spatial resolution for small size continuous crystal. In this work we propose a new method to calculate the position mean value by squaring the 2D collected charge distribution on a multi-anodes photomultiplier tube (MA-PMT). In this study we take into account four different detector configurations: three sample of LaBr3:Ce scintillation crystals, 49mm×49mm area, a couple of 4.0 with different surface treatment and a single 10 mm thick, with 3 mm glass window. Moreover a forth one with 5.0mm thickness which was integral assembled with an Hamamatsu H8500. We applied the new position algorithm to simulated data, obtained by Geant4 code and afterwards to the experimental data obtained scanning the different detectors with 0.4 mm Ø collimated Tc99m point source, at 1.5 mm step. The results obtained with the new algorithm show an improvement in position linearity and in spatial resolution of about a factor two. The best values in terms of spatial resolution were 0.9 mm, 1.1 mm and 1.8 mm for integral assembled, 4.0 mm thick and 10 mm thick LaBr3:Ce crystal respectively. These results demonstrate the potential of LaBr crystal for molecular imaging application and more in general for gamma ray imaging


Journal of Instrumentation | 2009

A Geant4 simulation code for simulating optical photons in SPECT scintillation detectors

S. Lo Meo; P. Bennati; M.N. Cinti; Nico Lanconelli; Francesco Navarria; R. Pani; R. Pellegrini; A. Perrotta; F. Vittorini

Geant4 is an object oriented toolkit created for the simulation of High-Energy Physics detectors. Geant4 allows an accurate modeling of radiation sources and detector devices, with easy configuration and friendly interface and at the same time with great accuracy in the simulation of physical processes. While most Monte Carlo codes do not allow the simulation of the transport and boundary characteristics for optical photons transport generated by scintillating crystal, Geant4 allows the simulation of the optical photons. In this paper we present an application of the Geant4 program for simulating optical photons in SPECT cameras. We aim to study the light transport within scintillators, photomultiplier tubes and coupling devices. To this end, we simulated a detector based on a scintillator, coupled to a photomultiplier tube through a glass window. We compared simulated results with experimental data and theoretical models, in order to verify the good matching with our simulations. We simulated a pencil beam of 140 keV photons impinging the crystal at different locations. For each condition, we calculated the value of the Pulse Height Centroid and the spread of the charge distribution, as read out by the anode array of the photomultiplier. Finally, the spatial and the energy resolutions of the camera have been estimated by simulated data. In all cases, we found that simulations agree very well with experimental data.


Applied Radiation and Isotopes | 2010

Simulation of radioactive decay in GEANT Monte Carlo codes: Comparison between spectra and efficiencies computed with sch2for and G4RadioactiveDecay

M. Capogni; S. Lo Meo; A. Fazio

Two CERN Monte Carlo codes, i.e. GEANT3.21 and GEANT4, were compared. The specific routine (sch2for), implemented in GEANT3.21 to simulate a disintegration process, and the G4RadioactiveDecay class, provided by GEANT4, were used for the computation of the full-energy-peak and total efficiencies of several radionuclides. No reference to experimental data was involved. A level of agreement better than 1% for the total efficiency and a deviation lower than 3.5% for the full-energy-peak efficiencies were found.


ieee nuclear science symposium | 2008

A novel parallel hole collimator for high resolution SPET imaging with a compact LaBr3 gamma camera

R. Pani; R. Pellegrini; P. Bennati; M.N. Cinti; S. Ridolfi; R. Scafè; G. De Vincentis; S. Lo Meo; Nico Lanconelli; F. L. Navarria; G. Moschini; Andrea Fabbri; E. D'Abramo; D. Sacco; V. Orsolini Cencelli; F. De Notaristefani

In this work we propose an analysis of a novel Low Energy (LE) parallel hole collimator for high resolution single photon emission tomography (SPET) applications. This prototype, realized jointly with Nuclear Fields, is a lead parallel hole collimator with 1.0 mm hexagonal hole, 18 mm length, 0.2 mm septa and 10x10 cm2 of useful detection area. It has been planned to match the high spatial resolution performances of a compact gamma camera based on LaBr3:Ce continuous scintillation crystal. The imaging performances of this prototype are compared with others two parallel collimators, for different dimensions and applications, and a tungsten pinhole collimator ones. All the collimators were tested with a compact scintillation gamma camera based on LaBr3:Ce continuous crystal and multi anode photomultipler tube (MA-PMT) Hamamatsu H8500. The high intrinsic spatial resolution of this crystal enhances the response of collimators at short source-to-collimator distance (SCD) overcoming alignment problems with the collimator pattern. From our analysis the collimator prototype seems to be complementary with the use of pinhole one and when coupled to the compact LaBr3:Ce gamma camera can allow a very attractive trade-off between spatial resolution, sensitivity and detection area for radionuclide molecular imaging applications.


Nuclear Physics | 2015

Fission induced by nucleons at intermediate energies

S. Lo Meo; D. Mancusi; Cristian Massimi; G. Vannini; A. Ventura

Abstract Monte Carlo calculations of fission of actinides and pre-actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Liege Intranuclear Cascade Model, INCL++, coupled with two different evaporation-fission codes, GEMINI++ and ABLA07. In order to reproduce experimental fission cross sections, model parameters are usually adjusted on available ( p , f ) cross sections and used to predict ( n , f ) cross sections for the same isotopes.


ieee nuclear science symposium | 2009

Investigation of depth dependent response of continuous LaBr 3 :Ce scintillation crystals

R. Pani; P. Bennati; R. Pellegrini; M.N. Cinti; S. Nourbakhsh; P. Pani; V. Orsolini Cencelli; F. De Notaristefani; F. L. Navarria; S. Lo Meo; A. Perrotta; Nico Lanconelli; G. Moschini; P. Boccaccio; R. Scafè

Knowledge of the Depth-Of-Interaction (DOI) in detector is crucial for small ring diameter PET scanner but it is also very important for single photon emission imaging, in particular for applications where very high spatial resolution is required and position distortions caused by slant collimators can strongly affect the final response of the 3D reconstructed image. In addition the DOI determination at 140 keV is the most critical due to thinner crystal thickness and the lower number of scintillation light photons. Continuous scintillation crystals are in principle the most suitable for continuous DOI determination based on the measurements of light width of cones generated at each gamma ray interaction. In this work we propose an analysis based on a Monte Carlo GEANT4 studies and on experimental measurements at 140 keV performed on a small LaBr3:Ce continuous crystal coupled to latest multi-anode PMT Hamamatsu H8500-MOD8 series equipped with super Bialkali photocathode (SBA). The basic idea of this work is that the high light output of LaBr3:Ce joint with SBA photodetector can reduces statistical uncertainties related to the light distribution spread determination. Furthermore it can be crucial with a more precise measurement of scintillation light distribution from the 8×8 anode array of MAPMT. Measurements and simulation confirm that light distribution spread (SD) is related to DOI, with a DOI resolution of about 2.0-2.2 mm (Monte Carlo) and 2.8-3.0 mm experimental at 140 keV. In addition, we shown how the selection in SD window provide a 10% of spatial resolution improvement, down to (0.85±0.03) mm, for a LaBr3(Ce) continuous crystal coupled to the new photodetector H8500-MOD8. This method can open the possibility to build a high-sensitivity detector with DOI capability useful for gamma-ray imaging application.


Physica Medica | 2014

Radiation dose around a PET scanner installation: Comparison of Monte Carlo simulations, analytical calculations and experimental results

S. Lo Meo; Gianfranco Cicoria; Francesco Campanella; M. Mattozzi; Antonio Sabatino Panebianco; Mario Marengo

PURPOSE Monte Carlo study of radiation transmission around areas surrounding a PET room. METHODS An extended population of patients administered with (18)F-FDG for PET-CT investigations was studied, collecting air kerma rate and gamma ray spectra measurements at a reference distance. An MC model of the diagnostic room was developed, including the scanner and walls with variable material and thickness. MC simulations were carried out with the widely used code GEANT4. RESULTS The model was validated by comparing simulated radiation dose values and gamma ray spectra produced by a volumetric source with experimental measurements; ambient doses in the surrounding areas were assessed for different combinations of wall materials and shielding and compared with analytical calculations, based on the AAPM Report 108. In the range 1.5-3.0 times of the product between the linear attenuation coefficient and thickness of an absorber (μ x), it was observed that the effectiveness of different combinations of shielding is roughly equivalent. An extensive tabulation of results is given in the text. CONCLUSIONS The validation tests performed showed a satisfactory agreement between the simulated and expected results. The simulated dose rates incident on, and transmitted by the walls in our model of PET scanner room, are generally in good agreement with analytical estimates performed using the AAPM Publication No. 108 method. This provides an independent confirmation of AAPMs approach. Even in this specific field of application, GEANT4 proved to be a relevant and accurate tool for dosimetry estimates, shielding evaluation and for general radiation protection use.


Journal of Instrumentation | 2015

Gamma emission tomosynthesis based on an automated slant hole collimation system

R. Pellegrini; R. Pani; M.N. Cinti; M. Longo; S. Lo Meo; M. Viviano

The imaging capabilities of radioisotope molecular imaging systems are limited by their ring geometry and by the object-to-detector distance, which impairs spatial resolution, efficiency and image quality. These detection capabilities could be enhanced by performing acquisitions with dedicated gamma cameras placed in close proximity to the object that has to be examined. The main aim of this work is to develop a compact camera suitable for detecting small and low-contrast lesions, with a higher detection efficiency than conventional SPECT, through a gamma emission tomosynthesis method. In this contribution a prototype of a new automated slant hole collimator, coupled to a small Field of View (FoV) gamma camera, is presented. The proposed device is able to acquire planar projection images at different angles without rotating around the patient body; these projection images are then three-dimensional reconstructed. Therefore, in order to perform the volumetric reconstruction of the studied object, the traditional Back Projection (BP) reconstruction is compared with the Shift And Add (SAA) method. In order to verify the effectiveness of the technique and to test the image reconstruction algorithms, a Monte Carlo simulation, based on the GEANT4 code, was implemented. The method was also validated by a set of experimental measurements. The discussed device is designed to work in patient proximity for detecting lesions placed at a distances ranged from 0 to 8 cm, thus allowing few millimeters planar resolutions and sagittal resolution of about 2 cm. The new collimation method implies high-resolution capabilities demonstrated by reconstructing the projection images through the BP and the SAA methods. The latter is simpler than BP and produces comparable spatial resolutions with respect to the traditional tomographic method, while preserving the image counts.

Collaboration


Dive into the S. Lo Meo's collaboration.

Top Co-Authors

Avatar

R. Pani

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

R. Pellegrini

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

M.N. Cinti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Scafè

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge