Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. M. Brumbley is active.

Publication


Featured researches published by S. M. Brumbley.


Plant Physiology | 2010

AraGEM, a Genome-Scale Reconstruction of the Primary Metabolic Network in Arabidopsis

Cristiana Gomes de Oliveira Dal'Molin; Lake-Ee Quek; Robin W. Palfreyman; S. M. Brumbley; Lars K. Nielsen

Genome-scale metabolic network models have been successfully used to describe metabolism in a variety of microbial organisms as well as specific mammalian cell types and organelles. This systems-based framework enables the exploration of global phenotypic effects of gene knockouts, gene insertion, and up-regulation of gene expression. We have developed a genome-scale metabolic network model (AraGEM) covering primary metabolism for a compartmentalized plant cell based on the Arabidopsis (Arabidopsis thaliana) genome. AraGEM is a comprehensive literature-based, genome-scale metabolic reconstruction that accounts for the functions of 1,419 unique open reading frames, 1,748 metabolites, 5,253 gene-enzyme reaction-association entries, and 1,567 unique reactions compartmentalized into the cytoplasm, mitochondrion, plastid, peroxisome, and vacuole. The curation process identified 75 essential reactions with respective enzyme associations not assigned to any particular gene in the Kyoto Encyclopedia of Genes and Genomes or AraCyc. With the addition of these reactions, AraGEM describes a functional primary metabolism of Arabidopsis. The reconstructed network was transformed into an in silico metabolic flux model of plant metabolism and validated through the simulation of plant metabolic functions inferred from the literature. Using efficient resource utilization as the optimality criterion, AraGEM predicted the classical photorespiratory cycle as well as known key differences between redox metabolism in photosynthetic and nonphotosynthetic plant cells. AraGEM is a viable framework for in silico functional analysis and can be used to derive new, nontrivial hypotheses for exploring plant metabolism.


Plant Physiology | 2010

C4GEM, a Genome-Scale Metabolic Model to Study C4 Plant Metabolism

Cristiana Gomes de Oliveira Dal'Molin; Lake-Ee Quek; Robin W. Palfreyman; S. M. Brumbley; Lars K. Nielsen

Leaves of C4 grasses (such as maize [Zea mays], sugarcane [Saccharum officinarum], and sorghum [Sorghum bicolor]) form a classical Kranz leaf anatomy. Unlike C3 plants, where photosynthetic CO2 fixation proceeds in the mesophyll (M), the fixation process in C4 plants is distributed between two cell types, the M cell and the bundle sheath (BS) cell. Here, we develop a C4 genome-scale model (C4GEM) for the investigation of flux distribution in M and BS cells during C4 photosynthesis. C4GEM, to our knowledge, is the first large-scale metabolic model that encapsulates metabolic interactions between two different cell types. C4GEM is based on the Arabidopsis (Arabidopsis thaliana) model (AraGEM) but has been extended by adding reactions and transporters responsible to represent three different C4 subtypes (NADP-ME [for malic enzyme], NAD-ME, and phosphoenolpyruvate carboxykinase). C4GEM has been validated for its ability to synthesize 47 biomass components and consists of 1,588 unique reactions, 1,755 metabolites, 83 interorganelle transporters, and 29 external transporters (including transport through plasmodesmata). Reactions in the common C4 model have been associated with well-annotated C4 species (NADP-ME subtypes): 3,557 genes in sorghum, 11,623 genes in maize, and 3,881 genes in sugarcane. The number of essential reactions not assigned to genes is 131, 135, and 156 in sorghum, maize, and sugarcane, respectively. Flux balance analysis was used to assess the metabolic activity in M and BS cells during C4 photosynthesis. Our simulations were consistent with chloroplast proteomic studies, and C4GEM predicted the classical C4 photosynthesis pathway and its major effect in organelle function in M and BS. The model also highlights differences in metabolic activities around photosystem I and photosystem II for three different C4 subtypes. Effects of CO2 leakage were also explored. C4GEM is a viable framework for in silico analysis of cell cooperation between M and BS cells during photosynthesis and can be used to explore C4 plant metabolism.


Molecular Plant-microbe Interactions | 2004

The genome sequence of the gram-positive sugarcane pathogen Leifsonia xyli subsp. xyli.

Claudia B. Monteiro-Vitorello; Luis Eduardo Aranha Camargo; Marie A. Van Sluys; João Paulo Kitajima; Daniela Truffi; Ricardo Harakava; Julio Cezar Franco de Oliveira; Derek W. Wood; Mariana C. Oliveira; Cristina Y. Miyaki; Marco A. Takita; Ana C. R. da Silva; Luis Roberto Furlan; Dirce Maria Carraro; Giovana Camarotte; Nalvo F. Almeida; Helaine Carrer; Luiz Lehmann Coutinho; Maria Inês Tiraboschi Ferro; Paulo R. Gagliardi; Éder A. Giglioti; Maria Helena S. Goldman; Gustavo H. Goldman; Edna T. Kimura; Emer S. Ferro; Eiko E. Kuramae; Eliana Gertrudes de Macedo Lemos; Manoel Victor Franco Lemos; Sônia Marli Zingaretti Di Mauro; Marcos Antonio Machado

The genome sequence of Leifsonia xyli subsp. xyli, which causes ratoon stunting disease and affects sugarcane worldwide, was determined. The single circular chromosome of Leifsonia xyli subsp. xyli CTCB07 was 2.6 Mb in length with a GC content of 68% and 2,044 predicted open reading frames. The analysis also revealed 307 predicted pseudogenes, which is more than any bacterial plant pathogen sequenced to date. Many of these pseudogenes, if functional, would likely be involved in the degradation of plant heteropolysaccharides, uptake of free sugars, and synthesis of amino acids. Although L. xyli subsp. xyli has only been identified colonizing the xylem vessels of sugarcane, the numbers of predicted regulatory genes and sugar transporters are similar to those in free-living organisms. Some of the predicted pathogenicity genes appear to have been acquired by lateral transfer and include genes for cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase. The presence of the latter may contribute to stunting, since it is likely involved in the synthesis of abscisic acid, a hormone that arrests growth. Our findings are consistent with the nutritionally fastidious behavior exhibited by L. xyli subsp. xyli and suggest an ongoing adaptation to the restricted ecological niche it inhabits.


Plant Biotechnology Journal | 2012

Enhanced polyhydroxybutyrate production in transgenic sugarcane

L. A. Petrasovits; L. Zhao; Richard B. McQualter; Kristi D. Snell; Maria N. Somleva; Nii Patterson; Lars K. Nielsen; S. M. Brumbley

Polyhydroxybutyrate (PHB) is a bacterial polyester that has properties similar to some petrochemically produced plastics. Plant-based production has the potential to make this biorenewable plastic highly competitive with petrochemical-based plastics. We previously reported that transgenic sugarcane produced PHB at levels as high as 1.8% leaf dry weight without penalty to biomass accumulation, suggesting scope for improving PHB production in this species. In this study, we used different plant and viral promoters, in combination with multigene or single-gene constructs to increase PHB levels. Promoters tested included the maize and rice polyubiquitin promoters, the maize chlorophyll A/B-binding protein promoter and a Cavendish banana streak badnavirus promoter. At the seedling stage, the highest levels of polymer were produced in sugarcane plants when the Cavendish banana streak badnavirus promoter was used. However, in all cases, this promoter underwent silencing as the plants matured. The rice Ubi promoter enabled the production of PHB at levels similar to the maize Ubi promoter. The maize chlorophyll A/B-binding protein promoter enabled the production of PHB to levels as high as 4.8% of the leaf dry weight, which is approximately 2.5 times higher than previously reported levels in sugarcane. This is the first time that this promoter has been tested in sugarcane. The highest PHB-producing lines showed phenotypic differences to the wild-type parent, including reduced biomass and slight chlorosis.


Applied and Environmental Microbiology | 2011

Variable Infection Frequency and High Diversity of Multiple Strains of Wolbachia pipientis in Perkinsiella Planthoppers

Grant L. Hughes; Peter G. Allsopp; S. M. Brumbley; Megan Woolfit; Elizabeth A. McGraw; Scott L. O'Neill

ABSTRACT This survey of Wolbachia infections in populations of the planthoppers Perkinsiella saccharicida and Perkinsiella vitiensis revealed variable frequencies, low-titer infections, and high phylogenetic diversities of strains. These observations add to the growing realization that Wolbachia infections may be extremely common within invertebrates and yet occur infrequently within populations and at low titer within individuals.


Current Opinion in Biotechnology | 2015

Production of novel biopolymers in plants: recent technological advances and future prospects.

Kristi D. Snell; Vijay P. Singh; S. M. Brumbley

The production of novel biopolymers in plants has the potential to provide renewable sources of industrial materials through agriculture. In this review we will highlight recent progress with plant-based production of polyhydroxyalkanoates (PHAs), silk, elastin, collagen, and cyanophycin with an emphasis on the synthesis of poly[(R)-3-hydroxybutyrate] (PHB), a renewable biodegradable PHA polymer with potential commercial applications in plastics, chemicals, and feed markets. Improved production of PHB has required manipulation of promoters driving expression of transgenes, reduction in activity of endogenous enzymes in competing metabolic pathways, insertion of genes to increase carbon flow to polymer, and basic plant biochemistry to understand metabolic limitations. These experiments have increased our understanding of carbon availability and partitioning in different plant organelles, cell types, and organs, information that is useful for the production of other novel molecules in plants.


Australasian Plant Pathology | 2006

Genetic uniformity of international isolates of Leifsonia xyli subsp. xyli, causal agent of ratoon stunting disease of sugarcane

Anthony Young; L. A. Petrasovits; B. J. Croft; Michael R. Gillings; S. M. Brumbley

An international collection of the sugarcane ratoon stunting disease pathogen, Leifsonia xyli subsp. xyli, was analysed to assess genetic diversity. DNA fingerprinting using BOX primers was performed on 105 isolates, comprising 65 Australian isolates and an additional 40 isolates from Indonesia (n=8), Japan (n=1), USA (n=3), Brazil (n=2), Mali (n=2), Zimbabwe (n=13), South Africa (n=9) and Réunion (n=2). Sixty-two of these isolates were also screened using ERIC primers. No variation was found among any of the isolates. The intergenic spacer (IGS) region of the ribosomal RNA genes from 54 isolates was screened for sequence variation using singlestranded conformational polymorphism (SSCP), but none was observed. Direct sequencing of the IGS from a subset of nine isolates, representing all of the countries sampled in this study, confirmed the results of the SSCP analysis. Likewise, no sequence variation was found in the 16S ribosomal RNA genes of the same subset. Four Colombian isolates from sugarcane, morphologically similar to L. xyli subsp. xyli, were putatively shown to be an undescribed Agrococcus species of unknown pathogenicity. The lack of genetic variation among L. xyli subsp. xyli isolates, independent of time of sampling, cultivar of isolation, or country of origin, suggests the worldwide spread of a single pathogenic clone, and further suggests that sugarcane cultivars resistant to ratoon stunting disease in one area should retain this property in other regions.


Theoretical and Applied Genetics | 2004

Homologues of the maize rust resistance gene Rp1-D are genetically associated with a major rust resistance QTL in sorghum.

C. L. McIntyre; S. Hermann; Rosanne E. Casu; D. Knight; J. Drenth; Yongfu Tao; S. M. Brumbley; I. D. Godwin; S. B. Williams; G. R. Smith; John M. Manners

As part of a comparative mapping study between sugarcane and sorghum, a sugarcane cDNA clone with homology to the maize Rp1-D rust resistance gene was mapped in sorghum. The cDNA probe hybridised to multiple loci, including one on sorghum linkage group (LG) E in a region where a major rust resistance QTL had been previously mapped. Partial sorghum Rp1-D homologues were isolated from genomic DNA of rust-resistant and -susceptible progeny selected from a sorghum mapping population. Sequencing of the Rp1-D homologues revealed five discrete sequence classes: three from resistant progeny and two from susceptible progeny. PCR primers specific to each sequence class were used to amplify products from the progeny and confirmed that the five sequence classes mapped to the same locus on LG E. Cluster analysis of these sorghum sequences and available sugarcane, maize and sorghum Rp1-D homologue sequences showed that the maize Rp1-D sequence and the partial sugarcane Rp1-D homologue were clustered with one of the sorghum resistant progeny sequence classes, while previously published sorghum Rp1-D homologue sequences clustered with the susceptible progeny sequence classes. Full-length sequence information was obtained for one member of a resistant progeny sequence class (Rp1-SO) and compared with the maize Rp1-D sequence and a previously identified sorghum Rp1 homologue (Rph1-2). There was considerable similarity between the two sorghum sequences and less similarity between the sorghum and maize sequences. These results suggest a conservation of function and gene sequence homology at the Rp1 loci of maize and sorghum and provide a basis for convenient PCR-based screening tools for putative rust resistance alleles in sorghum.


Molecular Plant-microbe Interactions | 2002

Transformation and transposon mutagenesis of Leifsonia xyli subsp. xyli, causal organism of ratoon stunting disease of sugarcane

S. M. Brumbley; L. A. Petrasovits; Robert G. Birch; P. W. J. Taylor

Conditions have been developed for genetic transformation and insertional mutagenesis in Leifsonia xyli subsp. xyli (Lxx), the causal organism of ratoon stunting disease (RSD), one of the most damaging and intractable diseases of sugarcane internationally. Transformation frequencies ranged from 1 to 10 colony forming units (CFU)/microg of plasmid DNA using Clavibacter/Escherichia coli shuttle vectors pCG188, pDM302, and pDM306 and ranged from 50 to 500 CFU/microg using cosmid cloning vectors pLAFR3 and pLAFR5-km. The transformation/transposition frequency was 0 to 70 CFU/microg of DNA, using suicide vectors pUCD623 and pSUP2021 containing transposable elements Tn4431 and Tn5, respectively. It was necessary to grow Lxx in media containing 0.1% glycine for electroporation and to amplify large plasmids in a dam-/dcm- E. coli strain and purify the DNA by anion exchange. To keep selection pressure at an optimum, the transformants were grown on nitrocellulose filters (0.2-microm pore size) on media containing the appropriate antibiotics. Transposon Tn4431 containing a promoterless lux operon from Vibrio fischeri and a tetracycline-resistance gene was introduced on the suicide vector pUCD623. All but 1% of the putative transposon mutants produce light, indicating transposition into functional Lxx genes. Southern blot analysis of these transformants indicates predominantly single transposon insertions at unique sites. The cosmid cloning vector pLAFR5-km was stably maintained in Lxx. The development of a transformation and transposon mutagenesis system opens the way for molecular analysis of pathogenicity determinants in Lxx.


Current Microbiology | 2004

Isolation and Characterization of Genes Encoding Thermoactive and Thermostable Dextranases from Two Thermotolerant Soil Bacteria

Patrick M. Finnegan; S. M. Brumbley; Michael G. O'Shea; Helena Nevalainen; Peter L. Bergquist

Thermotolerant Paenibacillus strain Dex70-1B and unidentified strain Dex70-34 produce thermoactive dextran-degrading enzymes. Plasmid-based genomic DNA libraries constructed from mixed bacterial cultures containing Dex70-1B or Dex70-34 were screened for the ability to confer dextranolytic activity at 70°C onto Escherichia coli. One gene, designated dex1, was isolated from each strain. The Dex70-1B and Dex70-34 dex1 gene sequences were non-identical, and encoded proteins containing 597 (Mr 68.6 kDa) and 600 amino acids (Mr 69.2 kDa), respectively. The Dex1 amino acid sequences were most similar to one another, and formed a new clade among the family 66 glycosyl hydrolase sequences. Expression of the Dex1 proteins in E. coli produced dextranolytic activity that converted ethanol-insoluble blue dextran into an ethanol-soluble form, suggestive of endodextranases (EC 3.2.1.11). Both enzymes were most active at about 60°C and pH 5.5, and retained more than 70% maximal activity after incubation at 57°C for 9.5 h in the absence of substrate.

Collaboration


Dive into the S. M. Brumbley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. P. Purnell

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

G. R. Smith

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar

Leigh Gebbie

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

B. J. Croft

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge