Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. M. Ord is active.

Publication


Featured researches published by S. M. Ord.


Publications of the Astronomical Society of Australia | 2013

The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies

S. J. Tingay; R. Goeke; Judd D. Bowman; D. Emrich; S. M. Ord; D. A. Mitchell; M. F. Morales; T. Booler; B. Crosse; R. B. Wayth; C. J. Lonsdale; S. E. Tremblay; D. Pallot; T. Colegate; Andreas Wicenec; N. Kudryavtseva; W. Arcus; David G. Barnes; G. Bernardi; F. Briggs; S. Burns; John D. Bunton; R. J. Cappallo; B. E. Corey; Avinash A. Deshpande; L. deSouza; B. M. Gaensler; L. J. Greenhill; Peter Hall; B. J. Hazelton

The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80–300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3-km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper, the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised.


Proceedings of the IEEE | 2009

The Murchison Widefield Array: Design Overview

C.L. Lonsdale; R. J. Cappallo; M. F. Morales; F. Briggs; Leonid Benkevitch; Judd D. Bowman; John D. Bunton; S. Burns; B. E. Corey; L. deSouza; Sheperd S. Doeleman; Mark Derome; Avinash A. Deshpande; M.R. Gopala; L. J. Greenhill; David Herne; Jacqueline N. Hewitt; P. A. Kamini; J. Kasper; B. B. Kincaid; Jonathon Kocz; E. Kowald; E. Kratzenberg; D. Kumar; M. J. Lynch; S. Madhavi; Michael Scott Matejek; D. A. Mitchell; E. Morgan; D. Oberoi

The Murchison Widefield Array is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations but is initially focused on three key science projects: detection and characterization of three-dimensional brightness temperature fluctuations in the 21 cm line of neutral hydrogen during the epoch of reionization (EoR) at redshifts from six to ten; solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources; and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broadband active dipoles, arranged into 512 ldquotilesrdquo comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5 km in diameter, with a small number of outliers extending to 3 km. All tile-tile baselines are correlated in custom field-programmable gate array based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment, allowing full exploitation of the instrumental capabilities.


The Astrophysical Journal | 2006

Upper Bounds on the Low-Frequency Stochastic Gravitational Wave Background from Pulsar Timing Observations: Current Limits and Future Prospects

Fredrick A. Jenet; G. Hobbs; W. van Straten; R. N. Manchester; M. Bailes; J. P. W. Verbiest; R. T. Edwards; A. W. Hotan; John M. Sarkissian; S. M. Ord

Using a statistically rigorous analysis method, we place limits on the existence of an isotropic stochastic gravitational wave background using pulsar timing observations. We consider backgrounds whose characteristic strain spectra may be described as a power-law dependence with frequency. Such backgrounds include an astrophysical background produced by coalescing supermassive black-hole binary systems and cosmological backgrounds due to relic gravitational waves and cosmic strings. Using the best available data, we obtain an upper limit on the energy density per unit logarithmic frequency interval of Ω h2 ≤ 1.9 × 10-8 for an astrophysical background that is 5 times more stringent than the earlier limit of 1.1 × 10-7 found by Kaspi and colleagues. We also provide limits on a background due to relic gravitational waves and cosmic strings of Ω h2 ≤ 2.0 × 10-8 and Ω h2 ≤ 1.9 × 10-8, respectively. All of the quoted upper limits correspond to a 0.1% false alarm rate together with a 95% detection rate. We discuss the physical implications of these results and highlight the future possibilities of the Parkes Pulsar Timing Array project. We find that our current results can (1) constrain the merger rate of supermassive binary black hole systems at high redshift, (2) rule out some relationships between the black hole mass and the galactic halo mass, (3) constrain the rate of expansion in the inflationary era, and (4) provide an upper bound on the dimensionless tension of a cosmic string background.


Publications of the Astronomical Society of Australia | 2013

Science with the Murchison Widefield Array

Judd D. Bowman; Iver H. Cairns; David L. Kaplan; Tara Murphy; Divya Oberoi; Lister Staveley-Smith; W. Arcus; David G. Barnes; G. Bernardi; F. Briggs; Shea Brown; John D. Bunton; Adam J. Burgasser; R. J. Cappallo; Shami Chatterjee; B. E. Corey; Anthea J. Coster; Avinash A. Deshpande; L. deSouza; D. Emrich; Philip J. Erickson; R. Goeke; B. M. Gaensler; L. J. Greenhill; L. Harvey-Smith; B. J. Hazelton; David Herne; Jacqueline N. Hewitt; M. Johnston-Hollitt; J. Kasper

Significant new opportunities for astrophysics and cosmology have been identified at low radio frequencies. The Murchison Widefield Array is the first telescope in the southern hemisphere designed specifically to explore the low-frequency astronomical sky between 80 and 300 MHz with arcminute angular resolution and high survey efficiency. The telescope will enable new advances along four key science themes, including searching for redshifted 21-cm emission from the EoR in the early Universe; Galactic and extragalactic all-sky southern hemisphere surveys; time-domain astrophysics; and solar, heliospheric, and ionospheric science and space weather. The Murchison Widefield Array is located in Western Australia at the site of the planned Square Kilometre Array (SKA) low-band telescope and is the only low-frequency SKA precursor facility. In this paper, we review the performance properties of the Murchison Widefield Array and describe its primary scientific objectives.


Monthly Notices of the Royal Astronomical Society | 2014

wsclean: an implementation of a fast, generic wide-field imager for radio astronomy

A. R. Offringa; B. McKinley; Natasha Hurley-Walker; F. Briggs; R. B. Wayth; David L. Kaplan; M. E. Bell; L. Feng; A. R. Neben; J. D. Hughes; Jonghwan Rhee; Tara Murphy; N. D. R. Bhat; G. Bernardi; Judd D. Bowman; R. J. Cappallo; B. E. Corey; Avinash A. Deshpande; D. Emrich; A. Ewall-Wice; B. M. Gaensler; R. Goeke; L. J. Greenhill; B. J. Hazelton; L. Hindson; M. Johnston-Hollitt; Daniel C. Jacobs; J. Kasper; E. Kratzenberg; E. Lenc

Astronomical widefield imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new widefield interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependencies of CASAs w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarisation correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square-Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.


Monthly Notices of the Royal Astronomical Society | 2017

GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey – I. A low-frequency extragalactic catalogue

Natasha Hurley-Walker; J. R. Callingham; Paul Hancock; Thomas M. O. Franzen; L. Hindson; A. D. Kapińska; J. Morgan; A. R. Offringa; R. B. Wayth; C. Wu; Q. Zheng; Tara Murphy; M. E. Bell; K. S. Dwarakanath; Bi-Qing For; B. M. Gaensler; M. Johnston-Hollitt; E. Lenc; P. Procopio; Lister Staveley-Smith; Ron D. Ekers; Judd D. Bowman; F. Briggs; R. J. Cappallo; Avinash A. Deshpande; L. J. Greenhill; Brynah J. Hazelton; David L. Kaplan; Colin J. Lonsdale; S. R. McWhirter

Using the Murchison Widefield Array (MWA), the low-frequency Square Kilometre Array precursor located in Western Australia, we have completed the GaLactic and Extragalactic All-sky MWA (GLEAM) survey and present the resulting extragalactic catalogue, utilizing the first year of observations. The catalogue covers 24 831 square degrees, over declinations south of +30° and Galactic latitudes outside 10° of the Galactic plane, excluding some areas such as the Magellanic Clouds. It contains 307 455 radio sources with 20 separate flux density measurements across 72–231 MHz, selected from a time- and frequency-integrated image centred at 200 MHz, with a resolution of ≈ 2 arcmin. Over the catalogued region, we estimate that the catalogue is 90 per cent complete at 170 mJy and 50 per cent complete at 55 mJy and large areas are complete at even lower flux density levels. Its reliability is 99.97 per cent above the detection threshold of 5σ, which itself is typically 50 mJy. These observations constitute the widest fractional bandwidth and largest sky area survey at radio frequencies to date and calibrate the low-frequency flux density scale of the southern sky to better than 10 per cent. This paper presents details of the flagging, imaging, mosaicking and source extraction/characterization, as well as estimates of the completeness and reliability. All source measurements and images are available online. 1 This is the first in a series of publications describing the GLEAM survey results.


Publications of the Astronomical Society of Australia | 2015

GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey

R. B. Wayth; E. Lenc; M. E. Bell; J. R. Callingham; K. S. Dwarakanath; Thomas M. O. Franzen; Bi Qing For; B. M. Gaensler; Paul Hancock; L. Hindson; Natasha Hurley-Walker; C. A. Jackson; M. Johnston-Hollitt; A. D. Kapińska; B. McKinley; J. Morgan; A. R. Offringa; P. Procopio; Lister Staveley-Smith; C. Wu; Q. Zheng; Cathryn M. Trott; G. Bernardi; Judd D. Bowman; F. Briggs; R. J. Cappallo; B. E. Corey; Avinash A. Deshpande; D. Emrich; R. Goeke

© Astronomical Society of Australia 2015; published by Cambridge University Press. This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/


IEEE Journal of Selected Topics in Signal Processing | 2008

Real-Time Calibration of the Murchison Widefield Array

D. A. Mitchell; L. J. Greenhill; R. B. Wayth; Robert J. Sault; Colin J. Lonsdale; Roger J. Cappallo; Miguel F. Morales; S. M. Ord

The interferometric technique known as peeling addresses many of the challenges faced when observing with low-frequency radio arrays, and is a promising tool for the associated calibration systems. We investigate a real-time peeling implementation for next-generation radio interferometers such as the Murchison widefield array (MWA). The MWA is being built in Australia and will observe the radio sky between 80 and 300 MHz. The data rate produced by the correlator is just over 19 GB/s (a few peta-bytes/day). It is impractical to store data generated at this rate, and software is currently being developed to calibrate and form images in real time. The software will run on-site on a high-throughput real-time computing cluster at several tera-flops, and a complete cycle of calibration and imaging will be completed every 8 s. Various properties of the implementation are investigated using simulated data. The algorithm is seen to work in the presence of strong galactic emission and with various ionospheric conditions. It is also shown to scale well as the number of antennas increases, which is essential for many upcoming instruments. Lessons from MWA pipeline development and processing of simulated data may be applied to future low-frequency fixed dipole arrays.


Monthly Notices of the Royal Astronomical Society | 2007

Dispersion measure variations and their effect on precision pulsar timing

X. P. You; G. Hobbs; William A. Coles; R. N. Manchester; Ross Edwards; M. Bailes; John M. Sarkissian; J. P. W. Verbiest; W. van Straten; A. W. Hotan; S. M. Ord; F. A. Jenet; N. D. R. Bhat; A. Teoh

We present an analysis of the variations seen in the dispersion measures (DMs) of 20-ms pulsars observed as part of the Parkes Pulsar Timing Array project.We carry out a statistically rigorous structure function analysis for each pulsar and show that the variations seen for most pulsars are consistent with those expected for an interstellar medium characterized by a Kolmogorov turbulence spectrum. The structure functions for PSRs J1045−4509 and J1909−3744 provide the first clear evidence for a large inner scale, possibly due to ion–neutral damping. We also show the effect of the solar wind on the DMs and show that the simple models presently implemented into pulsar timing packages cannot reliably correct for this effect. For the first time we clearly show how DM variations affect pulsar timing residuals and how they can be corrected in order to obtain the highest possible timing precision. Even with our presently limited data span, the residuals (and all parameters derived from the timing) for six of our pulsars have been significantly improved by correcting for the DM variations.


The Astrophysical Journal | 2005

The mass of a millisecond pulsar

Bryan A. Jacoby; Aidan W. Hotan; M. Bailes; S. M. Ord; S. R. Kulkarni

We report on nearly 2 years of timing observations of the low-mass binary millisecond pulsar PSR J1909-3744 with the Caltech-Parkes-Swinburne Recorder II, a new instrument that gives unprecedented timing precision. Daily observations give a weighted rms residual of 74 ns, indicating an extremely low level of systematic error. We have greatly improved on the previous parallax and proper motion measurements of PSR J1909-3744, yielding a distance of 1.14 kpc and transverse velocity of 200 km s-1. The systems orbital eccentricity is just (1.35 ± 12) × 10-7, the smallest yet recorded. Since their discovery, the masses of the rapidly rotating millisecond pulsars have remained a mystery, with the recycling hypothesis arguing for heavy objects, and the accretion-induced collapse of a white dwarf more consistent with neutron stars less than the Chandrashkar limit. Fortuitously, PSR J1909-3744 is an edge-on system, and our data have allowed the measurement of the range and shape of the Shapiro delay to high accuracy, giving the first precise determination of a millisecond pulsar mass to date, mp = 1.438 ± 0.024 M☉. The mass of PSR J1909-3744 is at the upper edge of the range observed in mildly recycled pulsars in double neutron star systems, consistent with the recycling hypothesis. It appears that the production of millisecond pulsars is possible with the accretion of <0.2 M☉.

Collaboration


Dive into the S. M. Ord's collaboration.

Researchain Logo
Decentralizing Knowledge