Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S.M. Rodrigues is active.

Publication


Featured researches published by S.M. Rodrigues.


Environmental Monitoring and Assessment | 2009

Mercury pollution in Ria de Aveiro (Portugal): a review of the system assessment

M.E. Pereira; Ana I. Lillebø; P. Pato; M. Válega; J.P. Coelho; Cláudia B. Lopes; S.M. Rodrigues; Anabela Cachada; Marta Otero; M.A. Pardal; Armando C. Duarte

The Ria de Aveiro (Portugal) is a coast al lagoon adjacent to the Atlantic Ocean and it has an inner bay (Laranjo bay) that received a highly contaminated effluent discharged by a mercury cell chlor-alkali plant from the 1950s until 1994. The aim of this study is to review in a holistic way several research studies that have been carried out in the Ria de Aveiro, in order to evaluate the remobilization of the mercury accumulated within the system and the recovery of the lagoon. The spatial distribution of the total mercury in the surrounding terrestrial environment has also been considered. Results indicate that the main mercury contamination problems in the Ria de Aveiro are confined to the Laranjo bay. Mercury export to the coastal waters and its impact on the nearshore compartments (water column, sediment and biota) are low. No direct effects of the mercury from nearby industrial activities were detected in Aveiro’s urban soils, although historical mercury contamination is still affecting soil quality in the immediate vicinity of the chlor-alkali plant, located in Estarreja. Moreover, macrophyte harvesting for human direct or indirect use and the consumption of mussels, crabs and the sea bass from the Laranjo bay may constitute a health risk. Further studies focusing on developing skills for the restoration of the ecosystem are presently underway.


Science of The Total Environment | 2009

Mercury contamination in the vicinity of a chlor-alkali plant and potential risks to local population.

Ana Reis; S.M. Rodrigues; Clarisse Araújo; J.P. Coelho; Eduarda Pereira; Armando C. Duarte

A mercury-cell chlor-alkali plant operated in Estarreja (North-western Portugal) for 50 years causing widespread environmental contamination. Although production by this process ceased in 2002, mercury contamination from the plant remains significant. The main objective of this study was to investigate mercury impact on the nearby environment and potential risks to local population. To assess the level of contamination soil samples were collected from agricultural fields in the vicinity of the plant, extending the study by taking samples of the predominant vegetation suitable for animal and human consumption, water samples, and fish species from a nearby coastal lagoon, to gain a preliminary insight into the potential for contamination of the terrestrial and aquatic food web. To determine population exposure to mercury, hair samples were collected from local residents. Total mercury concentration in the 0-15 cm layer of soil was found to be highly variable, ranging between 0.010 and 91 mg kg(-1), although mercury contamination of soils was found to be restricted to a confined area. Lolium perenne roots contained between 0.0070 and 2.0 mg kg(-1), and there is evidence that root systems uptake mercury from the soil. Levels of mercury in the aerial parts of plants ranged between 0.018 and 0.98 mg kg(-1). It appears that plants with higher mercury concentration in soils and roots also display higher mercury concentration in leaves. Total mercury concentration in water samples ranged between 12 and 846 ng L(-1), all samples presenting concentrations below the maximum level allowable for drinking water defined in the Portuguese law (1.0 microg L(-1)). Mercury levels in fish samples were below the maximum limit defined in the Portuguese law (0.5 mg kg(-1)), ranging from 0.0040 to 0.24 mg kg(-1). Vegetables collected presented maximum mercury concentration of 0.17 mg kg(-1). In general, food is not contaminated and should not be responsible for major human exposure to the metal. Mercury determined in human hair samples (0.090-4.2 mg kg(-1); mean 1.5 mg kg(-1)) can be considered within normal limits, according to WHO guidelines suggesting that it is not affecting the local population. Despite being subject to decades of mercury emissions, nowadays this pollutant is only found in limited small areas and must not constitute a risk for human health, should these areas be restricted and monitored. Considering the present data, it appears that the population from Estarreja is currently not being affected by mercury levels that still remain in the environment.


Chemosphere | 2010

Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas

Ana Reis; S.M. Rodrigues; Christine M. Davidson; Eduarda Pereira; Armando C. Duarte

This study focussed on a comparison of the extractability of mercury in soils with two different contamination sources (a chlor-alkali plant and mining activities) and on the evaluation of the influence of specific soil properties on the behaviour of the contaminant. The method applied here did not target the identification of individual species, but instead provided information concerning the mobility of mercury species in soil. Mercury fractions were classified as mobile, semi-mobile and non-mobile. The fractionation study revealed that in all samples mercury was mainly present in the semi-mobile phase (between 63% and 97%). The highest mercury mobility (2.7 mg kg(-1)) was found in soils from the industrial area. Mining soils exhibited higher percentage of non-mobile mercury, up to 35%, due to their elevated sulfur content. Results of factor analysis indicate that the presence of mercury in the mobile phase could be related to manganese and aluminium soil contents. A positive relation between mercury in the semi-mobile fraction and the aluminium content was also observed. By contrary, organic matter and sulfur contents contributed to mercury retention in the soil matrix reducing the mobility of the metal. Despite known limitations of sequential extraction procedures, the methodology applied in this study for the fractionation of mercury in contaminated soil samples provided relevant information on mercurys relative mobility.


Chemosphere | 2010

Evaluation of an approach for the characterization of reactive and available pools of twenty potentially toxic elements in soils: Part I – The role of key soil properties in the variation of contaminants’ reactivity

S.M. Rodrigues; Bruno Henriques; E. Ferreira da Silva; M.E. Pereira; Armando C. Duarte; P.F.A.M. Römkens

Harmful effects of potentially toxic elements (PTEs) in soils relate to their geochemically reactive fraction. To assess the degree of the reactivity, specific extractions or models are needed. Here we applied a 0.43 M HNO(3) chemical extraction to assess reactive pools of a broad range of PTEs in 136 contaminated and non-contaminated soils. Furthermore we derived Freundlich-type models based on commonly available soil properties (pH, organic carbon and clay) as well as extended models that used other properties such as amorphous Al and Fe oxides and evaluated their possible use in risk assessment. The approach allowed to predict the reactivity of As, Hg, Co, U, Ba, Se, Sb, Mo, Li, Be (r(2): 0.55-0.90) elements not previously included in such studies, as well as that of Cd, Zn, Cu, Pb, Ni and Cr (r(2): 0.73-0.90). The inclusion of pH, organic carbon and clay improved the performance of all models except for Be and Mo, although the role of clay is not completely clear and requires further investigation. The ability of amorphous metal oxides to affect the reactivity of As, Hg, Cu, Ni, Cr, Sb, Mo and Li was expressed by the models in agreement with known geochemical processes leading to the retention of PTEs by the solid matrix. Hence, such approach can be a useful tool to account for regional differences in soil properties during the identification of risk areas and constitute a significantly more powerful tool than the analysis of total pools of PTEs in soils.


Environment International | 2009

A review of regulatory decisions for environmental protection: Part I — Challenges in the implementation of national soil policies

S.M. Rodrigues; M.E. Pereira; E. Ferreira da Silva; Andrew Hursthouse; Armando C. Duarte

Since many soil studies have already revealed the possible risks to human health and the environment arising from contaminated soils it is therefore crucial to preserve soil quality under current and future conditions. In the last three decades a number of countries already introduced national policies and practices for the management of contaminated sites, and in 2002, an EU Thematic Strategy for Soil Protection was proposed by the European Commission. In this paper we review and analyse several national contaminated land policy regimes already in place in order to assess common elements and to identify specific needs in the development of national soil policies. We propose a framework that combines the D-P-S-I-R structure of policy evaluation with the Source-Pathway-Receptor approach to health risk assessment to support the development of effective country specific regulatory decisions for managing contaminated land in countries where these are yet to be implemented. The framework proposed allows decision makers to effectively use available information and to identify existing data gaps. As a result it is apparent that while there are technical aspects of site characterisation, risk assessment and remediation processes that could be commonly implemented at an EU level there are certain trans-scientific aspects that require political choices and need to be customized by EU Member States.


Chemosphere | 2010

Water-soluble fraction of mercury, arsenic and other potentially toxic elements in highly contaminated sediments and soils.

S.M. Rodrigues; Bruno Henriques; Joana Coimbra; E. Ferreira da Silva; M.E. Pereira; Armando C. Duarte

The water-soluble contents of mercury, arsenic and other potentially toxic elements in highly contaminated sediment and soil samples from Portugal were determined. Mercury and arsenic concentrations were detectable and reproducible among replicate experiments. Despite the acidic pH, the low organic carbon content and the exceptionally high levels of contamination of certain samples (total mercury contents varied between 0.15 and 3180 mg kg(-1) while total arsenic concentrations ranged from 11 to 6365 mg kg(-1)), the water-soluble percentages of both mercury (<1.2%) and arsenic (<4.6%) were generally low. The variability of the water-soluble fractions of these two elements among these samples and at the occurring pH conditions seems not to be associated with the release of other potentially toxic elements. The highest water-soluble concentrations of the remaining potentially toxic elements were generally observed in the 15-25 cm depth layer of sediments from areas colonised with plants (Halimione portulacoides) and in mining soil samples. Zinc, cobalt, copper and cadmium showed the highest water-soluble percentages of elements in relation to total metal contents. Given the high contamination levels, the availability of potentially toxic elements in these areas as well as possible risks to the environment and humans should be further investigated. The presence of plants (H. portulacoides) appears to cause significant changes in the sediment matrix that increase the mobility of several potentially toxic elements, particularly in the 15-25 cm depth layer. The effects of vegetation on the fractionation of potentially toxic elements on these sediments should be further studied.


Environment International | 2012

Soil–plant–animal transfer models to improve soil protection guidelines: A case study from Portugal

S.M. Rodrigues; M.E. Pereira; Armando C. Duarte; P.F.A.M. Römkens

Food chain models are essential tools to assess risks of soil contamination in view of product quality including fodder crops and animal products. Here we link soil to plant transfer (SPT) models for potentially toxic elements (PTEs) including As, Ba, Cd, Co, Cu, Hg, Ni, Pb, Sb, U and Zn with models describing accumulation in animal organs. Current EU standards for food products and acceptable daily intake levels (ADI) for humans were used as critical limits. The combined model is used to assess the impact of soil contamination on animal health, product quality and human health using data from 100 arable fields. Results indicate that 42 existing arable fields near industrial and mining sites are unsuitable for animal grazing in view of food safety due to elevated intake of Cd, Cu, Hg and Pb by cows and sheep. At 10 sites daily intake levels of As by cows exceeded threshold concentrations regarding the quality of animal products. The food chain model also was used inversely to derive soil threshold concentrations in view of EU fodder standards. Calculated threshold levels in soil for As, Cd, Cu, Pb, Hg and Zn appear to be in line with those proposed or used in other EU countries. As such the approach applied here can form a conceptual basis for a more harmonized risk assessment strategy regarding the protection of animal and human health.


Talanta | 2012

Development and validation of a simple thermo-desorption technique for mercury speciation in soils and sediments

Ana Reis; J.P. Coelho; S.M. Rodrigues; Rui J.M. Rocha; Christine M. Davidson; Armando C. Duarte; E. Pereira

An innovative technique for rapid identification and quantification of mercury (Hg) species in soils and sediments was developed using a direct mercury analyser. Speciation was performed by the continuous thermal-desorption of mercury species (temperature range 76-770 °C), in combination with atomic absorption spectrophotometry detection. Standard materials HgCl(2), Hg bound to humic acids and HgS were characterized; thermo-desorption curves of each material showed a well-resolved peak at specific temperature intervals: 125-225 °C, 100-250 °C and 225-325 °C, respectively. Certified reference materials (CRM) BCR(®) 142R, RTC(®) CRM 021, NRC(®) MESS-3 and PACS-2 were tested. Although the CRM were not certified for Hg species, the sum of Hg species obtained was compared to the certified value for total Hg; recoveries were 92%, 100%, 97%, and 95%, respectively. One sediment and three soil samples from mercury contaminated areas (total Hg concentrations 0.067-126 mg kg(-1)) were analysed as well. It was possible to compare peaks of thermo-desorption curves from the samples with those from standard materials and thereby distinguish different Hg species in solid samples. Generally, Hg was present as bound to chloride or humic substances. The precision was satisfactory, as reflected by the relative standard deviations determined for standards and certified reference materials (<11%; n=10).


Chemosphere | 2010

Evaluation of an approach for the characterization of reactive and available pools of 20 potentially toxic elements in soils: Part II – Solid-solution partition relationships and ion activity in soil solutions

S.M. Rodrigues; Bruno Henriques; E. Ferreira da Silva; M.E. Pereira; Armando C. Duarte; J.E. Groenenberg; P.F.A.M. Römkens

To assess environmental risks related to contaminants in soil it is essential to predict the available pool of inorganic contaminants at regional scales, accounting for differences between soils from variable geologic and climatic origins. An approach composed of a well-accepted soil extraction procedure (0.01 M CaCl(2)) and empirical Freundlich-type models in combination with mechanistically based models which to date have been used only in temperate regions was applied to 136 soils from a South European area and evaluated for its possible general use in risk assessment. Empirical models based on reactive element pools and soil properties (pH, organic carbon, clay, total Al, Fe and Mn) provided good estimations of available concentrations for a broad range of contaminants including As, Ba, Cd, Co, Cu, Hg, Mo, Ni, Pb, Sb, Se and Zn (r(2): 0.46-0.89). The variation of the pools of total Al in soils expressed the sorptive capacity of aluminosilicates and Al oxides at the surfaces and edges of clay minerals better than the actual variability of clay contents. The approach has led to recommendations for further research with particular emphasis on the impact of clay on the solubility of As and Sb, on the mechanisms controlling Cr and U availability and on differences in binding properties of soil organic matter from different climatic regions. This study showed that such approach may be included with a good degree of certainty for first step risk assessment procedures to identify potential risk areas for leaching and uptake of inorganic contaminants in different environmental settings.


Chemosphere | 2011

The water-soluble fraction of potentially toxic elements in contaminated soils: relationships between ecotoxicity, solubility and geochemical reactivity.

Luciana S. Rocha; S.M. Rodrigues; Isabel Lopes; Amadeu M.V.M. Soares; Armando C. Duarte; E. Pereira

To better understand the impacts posed by soil contamination to aquatic ecosystems it is crucial to characterise the links between ecotoxicity, chemical availability and geochemical reactivity of potentially toxic elements (PTEs) in soils. We evaluated the adverse effects of water extracts obtained from soils contaminated by chemical industry and mining, using a test battery including organisms from different trophic levels (bacteria, algae and daphnids). These tests provided a quick assessment of the ecotoxicity of soils with respect to possible adverse effects on aquatic organisms although the ecotoxicological responses could be related to the solubility of PTEs only to a limited extent. The analysis of results of bioassays together with the chemical characterisation of water extracts provided additional relevant insight into the role of conductivity, pH, Al, Fe, and Mn of soil extracts on toxicity to organisms. Furthermore, an important conclusion of this study was that the toxicity of extracts to the aquatic organisms could also be related to the soil properties (pH, Org C and Fe(ox)) and to the reactivity of PTEs in soils which in fact control the soluble fraction of the contaminants. The combined assessment of ecotoxicity in water fractions, solubility and geochemical reactivity of PTEs in soils provided a more comprehensive understanding of the bioavailability of inorganic contaminants than ecotoxicological or chemical studies alone and can therefore be most useful for environmental risks assessment of contaminated soils.

Collaboration


Dive into the S.M. Rodrigues's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

P.F.A.M. Römkens

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge